Skip to main content
Log in

Photoluminescence Properties of SrAl2O4: Pr3+ Phosphors for Red Light Sources

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A series of trivalent praseodymium (Pr3+) ion-activated SrAl2O4 phosphors were prepared by solid-state reaction and characterized. The morphology of prepared phosphors was examined through SEM and TEM studies. The adjacent spacing of lattice fringes was estimated to be ~0.28 nm for the (310) crystal plane of the SrAl2O4 structure. The luminescence properties were studied by exciting the prepared phosphors within the host as well as Pr3+ ions. For efficient luminescence, the concentration of Pr3+ ions was optimized to be 2.0 mol.%. The colour perception of emitted luminescence was examined by evaluating the chromaticity coordinates. The observed quenching in luminescence and the gradual decrease in lifetime with increase of Pr3+ concentration was assigned to the multi-polar interaction mechanism among the excited Pr3+ ions at higher concentrations. The studied phosphors show more proficiency for solid-state red light sources.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. J. Zhang, Y. Wang, L. Guo, and Y. Huang, Vacuum ultraviolet-ultraviolet, X-Ray, and near-infrared excited luminescence properties of SrR2O4:RE3+ (R = Y and Gd; RE = Tb, Eu, Yb, Tm, Er, and Ho). J. Am. Ceram. Soc. 95, 243 (2012).

    Article  CAS  Google Scholar 

  2. C.C. Lin, Y.T. Tsai, H.E. Johnston, M.H. Fang, F. Yu, W. Zhou, P. Whitfield, Y. Li, J. Wang, R.S. Liu, and J.P. Attfield, Enhanced photoluminescence emission and thermal stability from introduced cation disorder in phosphors. Am. Chem. Soc. 139, 11766 (2017).

    Article  CAS  Google Scholar 

  3. T. Krishnapriya, A. Jose, T.A. Jose, C. Joseph, N.V. Unnikrishnan, and P.R. Biju, Luminescent kinetics of Dy3+ doped CaZn2(PO4)2 phosphors for white light emitting applications. Adv. Powder Techn. 32, 1023 (2021).

    Article  CAS  Google Scholar 

  4. H.K. Shih, C.N. Liu, W.C. Cheng, and W.H. Cheng, High color rendering index of 94 in white LEDs employing novel CaAlSiN3: Eu2+ and Lu3Al5O12: Ce3+ co-doped phosphor-in-glass. Opt. Exp. 28, 28218 (2020).

    Article  CAS  Google Scholar 

  5. I. Gupta, S. Singh, S. Bhagwan, and D. Singh, Rare earth (RE) doped phosphors and their emerging applications: a review. Ceram. Int. 47, 19282 (2021).

    Article  CAS  Google Scholar 

  6. Y. Zhong, M. Xia, Z. Chen, P. Gao, H.B. Hintzen, W.Y. Wong, and Z. Zhou, Pyrophosphate phosphor solid solution with high quantum efficiency and thermal stability for efficient LED lighting. Iscience 23, 100892 (2020).

    Article  CAS  Google Scholar 

  7. Y. Hua, and Z. Li, Synthesis and photoluminescence properties of novel orange-emitting Sr2YSbO6:Sm3+ phosphors for potential solid-state lighting. Inorg. Chem. Commun. 128, 108576 (2021).

    Article  CAS  Google Scholar 

  8. R.K. Singh, Z. Chen, D. Kumar, K. Cho, and M. Ollinger, Critical issues in enhancing brightness in thin film phosphors for flat-panel display applications. Appl. Sur. Sci. 197–198, 321 (2002).

    Article  Google Scholar 

  9. P.K. Vishwakarma, P.K. Shahi, S.B. Rai, and A. Bahadur, Low temperature optical sensor based on non-thermally coupled level of Ho3+ and defect level of Zn2+ in Yb3+:Y2Ti2O7 phosphor. J. Phys. Chem. Solids 142, 109445 (2020).

    Article  CAS  Google Scholar 

  10. Z.G. Portakal-Uçar, T. Dogan, S. Akça, Ü.H. Kaynar, and M. Topaksu, Effect of Sm3+ and Mn2+ incorporation on the structure and luminescence characteristics of Zn2SiO4 phosphor. Rad. Phys. Chem. 181, 109329 (2021).

    Article  CAS  Google Scholar 

  11. B.C. Jamalaiah, and M. Jayasimhadri, Tunable luminescence properties of SrAl2O4: Eu3+ phosphors for LED applications. J. Mol. Struct. 1178, 394 (2019).

    Article  CAS  Google Scholar 

  12. B.C. Jamalaiah, and Y.R. Babu, Near UV excited SrAl2O4:Dy3+ phosphors for white LED applications. Mater. Chem. Phys. 211, 181 (2018).

    Article  CAS  Google Scholar 

  13. L.A. Diaz-Torres, J. Oliva, D. Chavez, and C.R. Garcia, Enhancing the white light emission of SrAl2O4:Ce3+ phosphors by co-doping with Li+ ions. Ceram. Int. 42, 16235 (2016).

    Article  CAS  Google Scholar 

  14. I.P. Sahu, Enhance luminescence by introducing alkali metal ions (R+ = Li+, Na+ and K+) in SrAl2O4:Eu3+ phosphor by solid-state reaction method. Rad. Eff. Def. Solids 176, 511 (2016).

    Article  CAS  Google Scholar 

  15. R.F. Qiang, S. Xiao, J.W. Ding, W. Yuan, and C. Zhu, Red emission in B3+- and Li+ -doped SrAl2O4:Eu3+ phosphor under UV excitation. J. Lumin. 129, 826 (2009).

    Article  CAS  Google Scholar 

  16. D.P. Bisen, and R. Sharma, Mechanoluminescence properties of SrAl2O4:Eu2+ phosphor by combustion synthesis. Lumin. 31, 394 (2016).

    Article  CAS  Google Scholar 

  17. W. Shan, L. Wu, N. Tao, Y. Chen, and D. Guo, Optimization method for green SrAl2O4:Eu2+, Dy3+ phosphors synthesized via co-precipitation route assisted by microwave irradiation using orthogonal experimental design. Ceram. Int. 41, 15034 (2015).

    Article  CAS  Google Scholar 

  18. L. Xiao, Q. Xiao, and Y. Liu, Preparation and characterization of flower-like SrAl2O4:Eu2+, Dy3+ phosphors by sol-gel process. J. Rare Earths 29, 39 (2011).

    Article  CAS  Google Scholar 

  19. B.C. Jamalaiah, N. Venkatramaiah, T.S. Rao, S.N. Rasool, B.N. Rao, D.V.R. Ram, and A.S.N. Reddy, UV excited SrAl2O4: Tb3+ nanophosphors for photonic applications. Mater. Sci. Semicond. Proc. 105, 104722 (2020).

    Article  CAS  Google Scholar 

  20. B.C. Jamalaiah, and N. Madhu, Luminescence properties of SrAl2O4: Tb3+/ Bi3+ nanophosphors for display applications. J. Mol. Struct. 1205, 127599 (2020).

    Article  CAS  Google Scholar 

  21. B.C. Jamalaiah, and N. Madhu, Orange-red fluorescence features of SrAl2O4: Sm3+ phosphors. Fun. Mater. Lett. 14, 2151007 (2021).

    Article  CAS  Google Scholar 

  22. Y.L. Xue, A.Y. Zhang, D. Zhao, R.J. Zhang, J. Zha, Y.P. Fan, and Z. Ma, Photoluminescence characteristics of Pr3+ doped PbGdB7O13 as a new red emitting phosphor. Optik 179, 1189 (2019).

    Article  CAS  Google Scholar 

  23. H.R. Shih, Y.Y. Tsai, K.T. Liu, Y.Z. Liao, and Y.S. Chang, The luminescent properties of Pr3+ ion-doped BaY2ZnO5 phosphor under blue light irradiation. Opt. Mater. 35, 2654 (2013).

    Article  CAS  Google Scholar 

  24. A. Durairajan, D. Thangaraju, S.M. Babu, and M.A. Valente, Luminescence characterization of sol-gel derived Pr3+ doped NaGd(WO4)2 phosphors for solid state lighting applications. Mater. Chem. Phys. 179, 295 (2016).

    Article  CAS  Google Scholar 

  25. Y. Guan, T. Tsuboi, Y. Huang, and W. Huang, Concentration quenching of praseodymium ions Pr3+ in BaGd2(MoO4)4 crystals. Dalton Trans. 43, 3698 (2014).

    Article  CAS  Google Scholar 

  26. S. Chawla, N. Kumar, and H. Chander, Broad yellow orange emission from SrAl2O4:Pr3+ phosphor with blue excitation for application to white LEDs. J. Lumin. 129, 114 (2009).

    Article  CAS  Google Scholar 

  27. D. Nakauchi, G. Okada, M. Koshimizu, and T. Yanagida, Scintillation and thermally-stimulated luminescence properties of Pr-doped SrAl2O4 single crystals. Rad. Meas. 106, 170 (2017).

    Article  CAS  Google Scholar 

  28. X. Feng, W. Feng, and K. Wang, Experimental and theoretical spectroscopic study of praseodymium (III) doped strontium aluminate phosphors. J. Alloys Compds. 628, 343 (2015).

    Article  CAS  Google Scholar 

  29. L.L. Zhang, C.X. Guo, J.J. Zhao, and J.T. Hu, Photoluminescence of Eu(III) -doped ZnO nanopowder and energy transfer from ZnO to Eu(III) ions. Chin. Phys. Lett. 22, 1225 (2005).

    Article  CAS  Google Scholar 

  30. M. Chroma, J. Pinkas, I. Pakutinskiene, A. Beganskiene, and A. Kareiva, Processing and characterization of sol-gel fabricated mixed metal aluminates. Ceram. Int. 31, 1123 (2005).

    Article  CAS  Google Scholar 

  31. P.P. Nampi, P. Moothetty, F.J. Berry, M. Mortimer, and K.G. Warrier, Aluminosilicates with varying alumina–silica ratios: synthesis via a hybrid sol–gel route and structural characterisation. Dalton Trans. 39, 5101–5107 (2010).

    Article  CAS  Google Scholar 

  32. S. Angappan, L.J. Berchmans, and C.O. Augustin, Sintering behaviour of MgAl2O4 – a prospective anode material. Mater. Lett. 58, 2283 (2004).

    Article  CAS  Google Scholar 

  33. M.A. Bouhifd, G. Gruener, B.O. Mysen, and P. Richet, Premelting and calcium mobility in gehlenite (Ca2Al2SiO7) and pseudowollastonite (CaSiO3). Phys. Chem. Min. 29, 655 (2002).

    Article  CAS  Google Scholar 

  34. J. Chen, F. Gu, and C. Li, Influence of precalcination and boron-doping on the initial photoluminescent properties of SrAl2O4: Eu, Dy phosphors. Crys. Gr. Des. 8, 3175 (2008).

    Article  CAS  Google Scholar 

  35. P. Escribano, M. Marchal, M.L. Sanjuán, P. Alonso-Gutiérrez, B. Julián, and E. Cordoncillo, Low-temperature synthesis of SrAl2O4 by a modified sol-gel route: XRD and Raman characterization. J. Solid State Chem. 178, 1978 (2005).

    Article  CAS  Google Scholar 

  36. S. Hamdan, R. Hussin, M.A. Salim, M.S. Husin, D.N.F.A. Halim, and M.S. Abdullah, Morphology and composition of strontium calcium aluminate matrix doped with Dy3+. Mater. Sci. Tech. 27, 232 (2011).

    Article  CAS  Google Scholar 

  37. Y Liao (2006). Practical electron microscopy and database (Global Sino, 2006).

  38. S. Jana, A. Mondal, J. Manam, and S. Das, Pr3+ doped BaNb2O6 reddish orange emitting phosphor for solid state lighting and optical thermometry applications. J. Alloys Compds. 821, 153342 (2020).

    Article  CAS  Google Scholar 

  39. L.L. Noto, M.L. Chithambo, O.M. Ntwaeaborwa, and H.C. Swart, The greenish-blue emission and thermoluminescent properties of CaTa2O6:Pr3+. J. Alloys Compds. 589, 88 (2014).

    Article  CAS  Google Scholar 

  40. W.T. Carnall, P.R. Fields, and K. Rajnak, Electronic energy levels in the trivalent lanthanide aquo ions I Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys. 49, 4424–4442 (1968).

    Article  CAS  Google Scholar 

  41. Q. Liu, Y. Liu, F. Yang, B. Han, H. Feng, and Q. Yu, A novel orange-red phosphor Ca3B2O6:Sm3+, A+ (A = Li, Na, K) for white light emitting diodes. Funct. Mater. Lett. 7, 1450033 (2014).

    Article  CAS  Google Scholar 

  42. K.H. Chen, M.H. Weng, R.Y. Yang, and C.T. Pan, New NaSrPO4:Sm3+ phosphor as orange-red emitting material. Bull. Mater. Sci. 39, 1171 (2016).

    Article  CAS  Google Scholar 

  43. L. Ozawa, and P.M. Jaffe, The mechanism of the emission color shift with activator concentration in Eu3+ activated phosphors. J. Electrochem. Soc. 118, 1678 (1971).

    Article  CAS  Google Scholar 

  44. G. Blasse, Energy transfer in oxide phosphors. Phys. Lett. A 28, 444 (1968).

    Article  CAS  Google Scholar 

  45. D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836 (1953).

    Article  CAS  Google Scholar 

  46. L.G. Van Uitert, Characterization of energy transfer interactions between rare earth ions. J. Electrochem. Soc. 114, 1048 (1967).

    Article  Google Scholar 

  47. H. Luo, Analysis of high-power packages for phosphor-based white-light-emitting diodes. Appl. Phys. Lett. 86, 243505 (2005).

    Article  CAS  Google Scholar 

  48. J.K. Kim, H. Luo, E.F. Schubert, J. Cho, C. Sone, and Y. Park, Strongly enhanced phosphor efficiency in GaInN white light-emitting diodes using remote phosphor configuration and diffuse reflector cup. Jpn. J. Appl. Phys. 44, L649 (2005).

    Article  CAS  Google Scholar 

  49. F. Kang, X. Yang, M. Peng, L. Wondraczek, Z. Ma, Q. Zhang, and J. Qiu, Red photoluminescence from Bi3+ and the influence of the oxygen-vacancy perturbation in ScVO4: a combined experimental and theoretical study. J. Phys. Chem. C 118, 7515 (2014).

    Article  CAS  Google Scholar 

  50. C.H. Huang, P.J. Wu, J.F. Lee, and T.M. Chen, (Ca, Mg, Sr)9Y(PO4)7:Eu2+, Mn2+: phosphors for white-light near-UV LEDs through crystal field tuning and energy transfer. J. Mater. Chem. 21, 10489 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

K. Pavani acknowledges the funding by national funds (OE), through FCT – Fundação para a Ciência e a Tecnologia, I.P., in the scope of the framework contract seen in numbers 4, 5 and 6 of article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19 and the project i3N, UIDB/50025/2020 & UIDP/50025/2020, financed by national funds through the FCT/MEC.

Author information

Authors and Affiliations

Authors

Contributions

B.C. Jamalaiah: Conceptualization, Software, Investigation, Writing-Original draft preparation, Writing-Reviewing and Editing, N. Madhu: Investigation, Writing-Reviewing and Editing, K. Pavani: Conceptualization, Data curation, Writing-Reviewing and Editing, A.J. Neves: Conceptualization, Validation, Writing-Reviewing and Editing

Corresponding author

Correspondence to B. C. Jamalaiah.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamalaiah, B.C., Madhu, N., Pavani, K. et al. Photoluminescence Properties of SrAl2O4: Pr3+ Phosphors for Red Light Sources. J. Electron. Mater. 51, 5282–5300 (2022). https://doi.org/10.1007/s11664-022-09761-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09761-x

Keywords

Navigation