Skip to main content
Log in

Improved Lithium Storage Capability of Si Anode by Ball-Milling Produced Graphitic Carbon Sheet and Fe3O4 Nanoparticles

  • Topical Collection: Advanced Metal Ion Batteries
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Silicon is considered the most promising material for anodes for the development of lithium-ion batteries (LIBs) due to its high theoretical capacity and natural abundance. However, the poor intrinsic conductivity and serious volume changes severely restrain the practical application. To address these issues, combining Si with carbon is confirmed as an effective strategy, but still suffers from uneven combination, poor interfacial contact and inferior electrochemical performance. Herein, Si@Fe3O4@C composites were synthesized by facile scalable ball-milling of nanosilicon, mesophase carbon microspheres (MCMB) and iron scurf from a stainless steel reactor. As compared to Si/C, the Si@Fe3O4@C composites exhibit much improved specific capacity, cycling stability and rate performance. The Fe3O4 nanoparticles not only help to boost the conductivity of Si but also accommodate their volume expansion during cycling. Consequently, the Si@Fe3O4@C anode delivers a reversible capacity of 1009 mA h g−1 at 200 mA g−1 after 110 cycles and 780.8 mA h g−1 at 1 A g−1 after 500 cycles. The method shows the merits of low cost, facile operation and easy industrial production for the synthesis of high-capacity Si anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Zhou, X.S. Yang, J. Liu, J. Liu, R. Hu, L. Ouyang, and M. Zhu, In-Situ Introducing TiP2 Nanocrystals in Black Phosphorus Anode to Promote High Rate-Capacity Synergy. J. Power Sources 499, 229979 (2021).

    Article  CAS  Google Scholar 

  2. Z. Zheng, H.H. Wu, H. Liu, Q. Zhang, X. He, S. Yu, V. Petrova, J. Feng, R. Kostecki, P. Liu, D.L. Peng, M. Liu, and M.S. Wang, Achieving Fast and Durable Lithium Storage through Amorphous FeP Nanoparticles Encapsulated in Ultrathin 3D P-Doped Porous Carbon Nanosheets. ACS Nano 14, 9545 (2020).

    Article  CAS  Google Scholar 

  3. S.D.A. Zaidi, C. Wang, B. György, C. Sun, H. Yuan, L. Tian, and J. Chen, Iron and Silicon Oxide Doped/PAN-Based Carbon Nanofibers as Free-Standing Anode Material for Li-ion Batteries. J. Colloid Interface Sci. 569, 164 (2020).

    Article  CAS  Google Scholar 

  4. Q. Zhao, X. Chen, W. Hou, B. Ye, Y. Zhang, X. Xia, and J. Wang, A Facile, Scalable, High Stability Lithium Metal Anode. SusMat 2, 104 (2022).

    Article  Google Scholar 

  5. Z. Xiao, C. Lei, C. Yu, X. Chen, Z. Zhu, H. Jiang, and F. Wei, Si@Si3N4@C Composite with Egg-Like Structure as High-Performance Anode Material for Lithium ion Batteries. Energy Storage Mater. 24, 565 (2020).

    Article  Google Scholar 

  6. Y. Li, W. Liu, Z. Long, P. Xu, Y. Sun, X. Zhang, S. Ma, and N. Jiang, Si@C Microsphere Composite with Multiple Buffer Structures for High-Performance Lithium-Ion Battery Anodes. Chem. Eur. J. 24, 12912 (2018).

    Article  CAS  Google Scholar 

  7. H. Wang, H. Man, J. Yang, J. Zang, R. Che, F. Wang, D. Sun, and F. Fang, Self-Adapting Electrochemical Grinding Strategy for Stable Silicon Anode. Adv. Funct. Mater. 32, 2109887 (2021).

    Article  CAS  Google Scholar 

  8. Y. He, L. Jiang, T. Chen, Y. Xu, H. Jia, R. Yi, D. Xue, M. Song, A. Genc, C. Bouchet-Marquis, L. Pullan, T. Tessner, J. Yoo, X. Li, J.G. Zhang, S. Zhang, and C. Wang, Progressive Growth of the Solid-Electrolyte Interphase Towards the Si Anode Interior Causes Capacity Fading. Nanomater. Nanotechnol. 16, 1113 (2021).

    CAS  Google Scholar 

  9. R. Fang, R. Li, Z. Wang, C. Miao, W. Xiao, Y. Zhang, X. Yan, and Y. Jiang, Novel High-Performance Si-SiO2@Fe/C Composite Anodes from Low-Cost and Industrial AlSiFe Alloy Powders. Solid State Ion 337, 42 (2019).

    Article  CAS  Google Scholar 

  10. X. Gao, W. Lu, and J. Xu, Insights into the Li Diffusion Mechanism in Si/C Composite Anodes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 13, 21362 (2021).

    Article  CAS  Google Scholar 

  11. M. Chen, W. Cao, L. Wang, X. Ma, and K. Han, Chessboard-Like Silicon/Graphite Anodes with High Cycling Stability toward Practical Lithium-Ion Batteries. ACS Appl. Energy Mater. 4, 775 (2020).

    Article  CAS  Google Scholar 

  12. W. Luo, C. Fang, X. Zhang, J. Liu, H. Ma, G. Zhang, Z. Liu, and X. Li, In Situ Generated Carbon Nanosheet-Covered Micron-Sized Porous Si Composite for Long-Cycling Life Lithium-Ion Batteries. ACS Appl. Energy Mater. 4, 535 (2020).

    Article  CAS  Google Scholar 

  13. P. Li, H. Kim, S.T. Myung, and Y.-K. Sun, Diverting Exploration of Silicon Anode into Practical Way: A Review Focused on Silicon-Graphite Composite for Lithium Ion Batteries. Energy Storage Mater. 35, 550 (2021).

    Article  Google Scholar 

  14. D. Sui, Y. Xie, W. Zhao, H. Zhang, Y. Zhou, X. Qin, Y. Ma, Y. Yang, and Y. Chen, A High-Performance Ternary Si Composite Anode Material with Crystal Graphite Core and Amorphous Carbon Shell. J. Power Sources 384, 328 (2018).

    Article  CAS  Google Scholar 

  15. X. Shen, Z. Tian, R. Fan, L. Shao, D. Zhang, G. Cao, L. Kou, and Y. Bai, Research Progress on Silicon/Carbon Composite Anode Materials for Lithium-Ion Battery. J. Energy Chem. 27, 1067 (2018).

    Article  Google Scholar 

  16. F. Dou, L. Shi, G. Chen, and D. Zhang, Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries. Electrochem. Energy Rev. 2, 149 (2019).

    Article  CAS  Google Scholar 

  17. X. Shan, Y. Zhong, L. Zhang, Y. Zhang, X. Xia, X. Wang, and J. Tu, A Brief Review on Solid Electrolyte Interphase Composition Characterization Technology for Lithium Metal Batteries: Challenges and Perspectives. J. Phys. Chem. C 125, 19060 (2021).

    Article  CAS  Google Scholar 

  18. C. Wang, Y. Li, F. Cao, Y. Zhang, X. Xia, and L. Zhang, Employing Ni-Embedded Porous Graphitic Carbon Fibers for High-Efficiency Lithium-Sulfur Batterie. ACS Appl. Mater. Interfaces 14, 10457 (2022).

    Article  CAS  Google Scholar 

  19. Y. Xia, T. Zhao, X. Zhu, Y. Zhao, H. He, C.T. Hung, X. Zhang, Y. Chen, X. Tang, J. Wang, W. Li, and D. Zhao, Inorganic-Organic Competitive Coating Strategy Derived Uniform Hollow Gradient-Structured Ferroferric Oxide-Carbon Nanospheres for Ultra-Fast and Long-Term Lithium-Ion Battery. Nat. Commun. 12, 2973 (2021).

    Article  CAS  Google Scholar 

  20. B.H. Hou, Y.Y. Wang, J.Z. Guo, Y. Zhang, Q.L. Ning, Y. Yang, W.H. Li, J.P. Zhang, X.L. Wang, and X.L. Wu, A Scalable Strategy To Develop Advanced Anode for Sodium-Ion Batteries: Commercial Fe3O4-Derived Fe3O4@FeS with Superior Full-Cell Performance. ACS Appl. Mater. Interfaces 10, 3581 (2018).

    Article  CAS  Google Scholar 

  21. J. Jang, S.H. Song, H. Kim, J. Moon, H. Ahn, K.I. Jo, J. Bang, H. Kim, and J. Koo, Janus Graphene Oxide Sheets with Fe3O4 Nanoparticles and Polydopamine as Anodes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 13, 14786 (2021).

    Article  CAS  Google Scholar 

  22. C. Han, L. Xu, H. Li, R. Shi, T. Zhang, J. Li, C.P. Wong, F. Kang, Z. Lin, and B. Li, Biopolymer-Assisted Synthesis of 3D Interconnected Fe3O4@Carbon Core@Shell as Anode for Asymmetric Lithium Ion Capacitors. Carbon 140, 296 (2018).

    Article  CAS  Google Scholar 

  23. Q. Wang, C. Guo, J. He, S. Yang, Z. Liu, and Q. Wang, Fe2O3/C-Modified Si Nanoparticles as Anode Material for High-Performance Lithium-Ion Batteries. J. Alloys Compd. 795, 284 (2019).

    Article  CAS  Google Scholar 

  24. Y. Yan, Y. Chen, Y. Li, X. Wu, C. Jin, and Z. Wang, Synthesis of Si/Fe2O3-Anchored rGO Frameworks as High-Performance Anodes for Li-Ion Batteries. Int. J. Mol. Med. 22, 11041 (2021).

    CAS  Google Scholar 

  25. G. Grinbom, D. Duveau, G. Gershinsky, L. Monconduit, and D. Zitoun, Silicon/Hollow γ-Fe2O3 Nanoparticles as Efficient Anodes for Li-Ion Batteries. Chem. Mater. 27, 2703 (2015).

    Article  CAS  Google Scholar 

  26. C. Liao, and S. Wu, Pseudocapacitance Behavior on Fe3O4-Pillared SiOx Microsphere Wrapped by Graphene as High Performance Anodes for Lithium-Ion Batteries. Chem. Eng. J. 355, 805 (2019).

    Article  CAS  Google Scholar 

  27. L. Su, Y. Zhong, and Z. Zhou, Role of Transition metal Nanoparticles in the Extra Lithium Storage Capacity of Transition Metal Oxides: A Case Study of Hierarchical Core–Shell Fe 3 O 4@ C and Fe@ C Microspheres. J. Mater. Chem. A 1, 15158–15166 (2013).

    Article  CAS  Google Scholar 

  28. C. Liu, Q. Xia, C. Liao, and S. Wu, Pseudocapacitance Contribution to Three-Dimensional Micro-Sized Silicon@Fe3O4@Few-Layered Graphene for High-Rate and Long-Life Lithium Ion Batteries. Mater. Today Commun. 18, 66 (2019).

    Article  CAS  Google Scholar 

  29. H. Wang, Y. Ding, J. Nong, Q. Pan, Z. Qiu, X. Zhang, F. Zheng, Q. Wu, Y. Huang, and Q. Li, Bifunctional NaCl Template for the Synthesis of Si@Graphitic Carbon Nanosheets as Advanced Anode Materials for Lithium Ion Batteries. New J. Chem. 44, 14278 (2020).

    Article  CAS  Google Scholar 

  30. Q. He, M. Ashuri, Y. Liu, B. Liu, and L. Shaw, Silicon Microreactor as a Fast Charge, Long Cycle Life Anode with High Initial Coulombic Efficiency Synthesized via a Scalable Method. ACS Appl. Energy Mater. 4, 4744 (2021).

    Article  CAS  Google Scholar 

  31. J. Han, X. Tang, S. Ge, Y. Shi, C. Zhang, F. Li, and S. Bai, Si/C Particles on Graphene Sheet as Stable Anode for Lithium-Ion Batteries. J. Mater. Sci. Technol. 80, 259 (2021).

    Article  CAS  Google Scholar 

  32. H. Huang, G. Yang, J. Yu, J. Zhang, Y. Xia, K. Wang, C. Liang, Y. Gan, X. He, and W. Zhang, One-Pot Synthesis of Nanocrystalline SnS@ Tremella-Like Porous Carbon by Supercritical CO2 Method for Excellent Sodium Storage Performance. Electrochim. Acta 373, 137933 (2021).

    Article  CAS  Google Scholar 

  33. J. Chen, Z. Mao, L. Zhang, D. Wang, R. Xu, L. Bie, and B.D. Fahlman, Nitrogen-Deficient Graphitic Carbon Nitride with Enhanced Performance for Lithium Ion Battery Anodes. ACS Nano 11, 12650 (2017).

    Article  CAS  Google Scholar 

  34. L. Shi, W. Wang, A. Wang, K. Yuan, Z. Jin, and Y. Yang, Scalable Synthesis of Core-Shell Structured SiO x/Nitrogen-Doped Carbon Composite as a High-Performance Anode Material for Lithium-Ion Batteries. J. Power Sources 318, 184 (2016).

    Article  CAS  Google Scholar 

  35. N. Zhang, C. Chen, X. Yan, Y. Huang, J. Li, J. Ma, and D.H.L. Ng, Bacteria-Inspired Fabrication of Fe3O4-Carbon/Graphene Foam for Lithium-Ion Battery Anodes. Electrochim. Acta 223, 39 (2017).

    Article  CAS  Google Scholar 

  36. P. Sabhapathy, C.C. Liao, W.F. Chen, T.C. Chou, I. Shown, A. Sabbah, Y.G. Lin, J.F. Lee, M.K. Tsai, K.H. Chen, and L.C. Chen, Highly Efficient Nitrogen and Carbon Coordinated N-Co-C Electrocatalysts on Reduced Graphene Oxide Derived from Vitamin-B12 for the Hydrogen Evolution Reaction. J. Mater. Chem. A 7, 7179 (2019).

    Article  CAS  Google Scholar 

  37. W. Ren, H. Zhang, C. Guan, and C. Cheng, Ultrathin MoS2 Nanosheets@Metal Organic Framework-Derived N-Doped Carbon Nanowall Arrays as Sodium Ion Battery Anode with Superior Cycling Life and Rate Capability. Adv. Funct. Mater. 27, 1702116 (2017).

    Article  CAS  Google Scholar 

  38. P. Limthongkul, Y.I. Jang, N.J. Dudney, and Y.M. Chiang, Electrochemically-Driven Solid-State Amorphization in Lithium-Silicon Alloys and Implications for Lithium Storage. Acta Mater. 51, 1103 (2003).

    Article  CAS  Google Scholar 

  39. M. Furquan, A.R. Khatribail, S. Vijayalakshmi, and S. Mitra, Efficient Conversion of Sand to Nano-Silicon and its Energetic Si-C Composite Anode Design for High Volumetric Capacity Lithium-Ion Battery. J. Power Sources 382, 56–68 (2018).

    Article  CAS  Google Scholar 

  40. X. Pu, M. Liu, L. Li, C. Zhang, Y. Pang, C. Jiang, L. Shao, W. Hu, and Z.L. Wang, Efficient Charging of Li-Ion Batteries with Pulsed Output Current of Triboelectric Nanogenerators. Adv. Sci. (Weinh) 3, 1500255 (2016).

    Article  CAS  Google Scholar 

  41. M. Zhang, Y. Li, E. Uchaker, S. Candelaria, L. Shen, T. Wang, and G. Cao, Homogenous Incorporation of SnO2 Nanoparticles in Carbon Cryogels via the Thermal Decomposition of Stannous Sulfate and their Enhanced Lithium-Ion Intercalation Properties. Nano Energy 2, 769 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Natural Science Foundation of China (U20A20253, 21972127, 21905249) and Natural Science Foundation of Zhejiang Province (LY21E020005, LD22E020006) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Huang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Zheng, Y., Gan, Y. et al. Improved Lithium Storage Capability of Si Anode by Ball-Milling Produced Graphitic Carbon Sheet and Fe3O4 Nanoparticles. J. Electron. Mater. 51, 4780–4789 (2022). https://doi.org/10.1007/s11664-022-09736-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09736-y

Keywords

Navigation