Skip to main content
Log in

2.2 kV Breakdown Voltage AlGaN/GaN Schottky Barrier Diode with Polarization Doping Modulated 3D Hole Gas Cap Layer and Polarization Junction Structure

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report a AlGaN/GaN Schottky barrier diode (SBD) with polarization doping modulated three-dimensional hole gas (3DHG) cap layer (PDHG cap layer) and polarization junction (PJ) and systematically investigate the impact of the length of the PDHG layer on reverse and forward characteristics by numerical simulation. In an SBD with polarization junction structure (PJ-SBD), the positive and negative polarization charges at PJ heterointerfaces are compensated at reverse voltage and the electric field and carrier depletion region are redistributed, which alleviate the electric field crowding effect at the edge of Schottky anode. In an SBD with PDHG and PJ structures (PDHG-PJ-SBD), the PDHG layer can further get a higher average electric field and forms a PDHG/GaN p-n diode connected to a Schottky anode in parallel, which improves the reverse blocking capability and reduces Ron,sp, when compared with a PJ-SBD. The result shows that the PDHG-PJ-SBD has the most superior reverse performance when compared to the PJ-SBD and conventional SBD. In the PDHG-PJ-SBD, a higher breakdown voltage (VBD) and lower leakage current has been achieved. We find that the length of the PDHG is closely associated with electric field distribution and reverse characteristics of the PDHG-PJ-SBD. The best performance is found in the PDHG-PJ-SBD when the length of the PDHG cap layer is 4 μm, with a high breakdown voltage of 2258 V, a specific on-resistance (Ron,sp) of 2.7 5mΩ cm2, a turn-on voltage of 0.64 V and Baliga’s figure of merit (BFOM) of 1854 MW/cm2, which is almost 84 times higher compared to a conventional SBD with BFOM = 21 MW/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B.N. Pushpakaran, A.S. Subburaj, and S.B. Bayne, Commercial GaN-based power electronic systems: a review. J. Electron. Mater. 49, 6247–6262 (2020).

    Article  CAS  Google Scholar 

  2. H. Amano, Y. Baines, E. Beam, M. Borga, T. Bouchet, P.R. Chalker, M. Charles, K.J. Chen, N. Chowdhury, R. Chu, C. De Santi, M.M. De Souza, S. Decoutere, L. Di Cioccio, B. Eckardt, T. Egawa, P. Fay, J.J. Freedsman, L. Guido, O. Häberlen, G. Haynes, T. Heckel, D. Hemakumara, P. Houston, J. Hu, M. Hua, Q. Huang, A. Huang, S. Jiang, H. Kawai, D. Kinzer, M. Kuball, A. Kumar, K.B. Lee, X. Li, D. Marcon, M. März, R. McCarthy, G. Meneghesso, M. Meneghini, E. Morvan, A. Nakajima, E.M.S. Narayanan, S. Oliver, T. Palacios, D. Piedra, M. Plissonnier, R. Reddy, M. Sun, I. Thayne, A. Torres, N. Trivellin, V. Unni, M.J. Uren, M. Van Hove, D.J. Wallis, J. Wang, J. Xie, S. Yagi, S. Yang, C. Youtsey, R. Yu, E. Zanoni, S. Zeltner, and Y. Zhang, The 2018 GaN power electronics roadmap. J. Phys. D: Appl. Phys. 51, 163001 (2018).

    Article  Google Scholar 

  3. M. Trivedi and K. Shenai, Performance evaluation of high-power wide band-gap semiconductor rectifiers. J. Appl. Phys. 85, 6889–6897 (1999).

    Article  CAS  Google Scholar 

  4. O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85, 13 (1999).

    Article  Google Scholar 

  5. R. Sun, J. Lai, W. Chen, and B. Zhang, GaN power integration for high frequency and high efficiency power applications: a review. IEEE Access 8, 15529–15542 (2020).

    Article  Google Scholar 

  6. M. Zhu, B. Song, M. Qi, Z. Hu, K. Nomoto, X. Yan, Y. Cao, W. Johnson, E. Kohn, D. Jena, and H.G. Xing, 1.9-kV AlGaN/GaN lateral schottky barrier diodes on silicon. IEEE Electron Device Lett. 36, 375–377 (2015).

    Article  Google Scholar 

  7. Y. Sun, Y. Wang, J. Tang, W. Wang, Y. Huang, and X. Kuang, A breakdown enhanced AlGaN/GaN Schottky barrier diode with the T-anode position deep into the bottom buffer layer. Micromachines 10, 91 (2019).

    Article  Google Scholar 

  8. J. Zhang, Y.-F. Guo, D.Z. Pan, K.-M. Yang, X.-J. Lian, and J.-F. Yao, Effective doping concentration theory: a new physical insight for the double-RESURF lateral power devices on SOI substrate. IEEE Trans. Electron Devices 65, 648–654 (2018).

    Article  CAS  Google Scholar 

  9. T. Fujihira, Theory of semiconductor superjunction devices. Jpn. J. Appl. Phys. 36, 6254 (1997).

    Article  CAS  Google Scholar 

  10. A. Nakajima, K. Adachi, M. Shimizu, and H. Okumura, Improvement of unipolar power device performance using a polarization junction. Appl. Phys. Lett. 89, 193501 (2006).

    Article  Google Scholar 

  11. A. Nakajima, Y. Sumida, M.H. Dhyani, H. Kawai, and E.M.S. Narayanan, High density two-dimensional hole gas induced by negative polarization at GaN/AlGaN heterointerface. Appl. Phys. Exp. 3, 121004 (2010).

    Article  Google Scholar 

  12. H. Kawai, S. Yagi, S. Hirata, F. Nakamura, T. Saito, Y. Kamiyama, M. Yamamoto, H. Amano, V. Unni, and E.M.S. Narayanan, Low cost high voltage GaN polarization superjunction field effect transistors. Phys. Status Solidi A 214, 1600834 (2017).

    Article  Google Scholar 

  13. A. Nakajima, M. H. Dhyani, E. M. S. Narayanan, Y. Sumida, and H. Kawai, GaN based Super HFETs over 700V using the polarization junction concept, in 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs (IEEE, San Diego, CA, USA, 2011), pp. 280–283.

  14. V. Unni, H. Long, M. Sweet, A. Balachandran, E. M. S. Narayanan, A. Nakajima, and H. Kawai, 2.4kV GaN Polarization Superjunction Schottky Barrier Diodes on semi-insulating 6H-SiC substrate, in 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC’s (ISPSD) (IEEE, Waikoloa, HI, USA, 2014), pp. 245–248.

  15. T. Sun, X. Luo, J. Wei, C. Yang, and B. Zhang, Theoretical and experimental study on AlGaN/GaN Schottky barrier diode on Si substrate with double-heterojunction. Nanoscale Res Lett 15, 149 (2020).

    Article  CAS  Google Scholar 

  16. K.-P. Hsueh, Y.-S. Chang, B.-H. Li, H.-C. Wang, H.-C. Chiu, C.-W. Hu, and R. Xuan, Effect of the AlGaN/GaN Schottky barrier diodes combined with a dual anode metal and a p-GaN layer on reverse breakdown and turn-on voltage. Mater. Sci. Semicond. Process. 90, 107–111 (2019).

    Article  CAS  Google Scholar 

  17. M. Xiao, Z. Du, J. Xie, E. Beam, X. Yan, K. Cheng, H. Wang, Y. Cao, and Y. Zhang, Lateral p-GaN/2DEG junction diodes by selective-area p-GaN trench-filling-regrowth in AlGaN/GaN. Appl. Phys. Lett. 116, 053503 (2020).

    Article  CAS  Google Scholar 

  18. M. Xiao, Y. Ma, K. Cheng, K. Liu, A. Xie, E. Beam, Y. Cao, and Y. Zhang, 3.3 kV Multi-channel AlGaN/GaN schottky barrier diodes with P-GaN termination. IEEE Electron Device Lett. 41, 1177–1180 (2020).

    Article  CAS  Google Scholar 

  19. X. Zheng, Z. Tang, L. Lv, D. Bai, C. Wang, W. Mao, Y. Cao, X. Ma, and Y. Hao, A novel AlGaN/GaN Schottky barrier diode with partial p-AlGaN cap layer and recessed dual-metal anode for high breakdown and low turn-on voltage. Semicond. Sci. Technol. 35, 015018 (2020).

    Article  CAS  Google Scholar 

  20. D. Jena, J. Simon, A.K. Wang, Y. Cao, K. Goodman, J. Verma, S. Ganguly, G. Li, K. Karda, V. Protasenko, C. Lian, T. Kosel, P. Fay, and H. Xing, Polarization-engineering in group III-nitride heterostructures: new opportunities for device design. Phys. Status Solidi A 208, 1511–1516 (2011).

    Article  CAS  Google Scholar 

  21. S. Li, M. Ware, J. Wu, P. Minor, Z. Wang, Z. Wu, Y. Jiang, and G.J. Salamo, Polarization induced pn-junction without dopant in graded AlGaN coherently strained on GaN. Appl. Phys. Lett. 101, 122103 (2012).

    Article  Google Scholar 

  22. D. Jena, S. Heikman, D. Green, D. Buttari, R. Coffie, H. Xing, S. Keller, S. DenBaars, J.S. Speck, U.K. Mishra, and I. Smorchkova, Realization of wide electron slabs by polarization bulk doping in graded III–V nitride semiconductor alloys. Appl. Phys. Lett. 81, 4395–4397 (2002).

    Article  CAS  Google Scholar 

  23. F. Peng, C. Yang, S. Deng, D. Ouyang, B. Zhang, J. Wei, and X. Luo, Simulation of a high-performance enhancement-mode HFET with back-to-back graded AlGaN layers. Sci. China Inf. Sci. 62, 62403 (2018).

    Article  Google Scholar 

  24. S. Deng, J. Wei, D. Ouyang, B. Zhang, C. Yang, and X. Luo, High performance enhancement-mode HEMT with 3DEG to conduct current and 3DHG as back barrier. Superlattices Microstruct. 130, 437–445 (2019).

    Article  CAS  Google Scholar 

  25. E. Fabris, C. De Santi, A. Caria, K. Mukherjee, K. Nomoto, Z. Hu, W. Li, X. Gao, H. Marchand, D. Jena, H.G. Xing, G. Meneghesso, E. Zanoni, and M. Meneghini, Impact of residual carbon on avalanche voltage and stability of polarization-induced vertical GaN p-n junction. IEEE Trans. Electron Devices 67, 3978–3982 (2020).

    Article  CAS  Google Scholar 

  26. G. Ghione, IEEE looking for quality in TCAD-based papers. Trans. Electron Devices 66, 3252 (2019).

    Article  Google Scholar 

  27. J. Hu, S. Stoffels, S. Lenci, S. You, B. Bakeroot, N. Ronchi, R. Venegas, G. Groeseneken, and S. Decoutere, Leakage and trapping characteristics in Au-free AlGaN/GaN Schottky barrier diodes fabricated on C-doped buffer layers: Buffer trapping in AlGaN/GaN Schottky barrier diodes. Phys. Status Solidi A 213, 1229–1235 (2016).

    Article  CAS  Google Scholar 

  28. J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science 327, 60–64 (2010).

    Article  CAS  Google Scholar 

  29. H. Zhang et al., Compositionally graded III-nitride alloys: building blocks for efficient ultraviolet optoelectronics and power electronics. Rep. Prog. Phys. 84, 044401 (2021).

    Article  CAS  Google Scholar 

  30. V. Unni, H.Y. Long, H. Yan, A. Nakajima, H. Kawai, and E.M. Sankara Narayanan, Analysis of drain current saturation behaviour in GaN polarisation super junction HFETs. IET Power Electron. 11, 2198–2203 (2018).

    Article  Google Scholar 

  31. Z.-F. Cao, Z.-J. Lin, Y.-J. Lü, C.-B. Luan, Y.-X. Yu, H. Chen, and Z.-G. Wang, Determination of the series resistance under the Schottky contacts of AlGaN/AlN/GaN Schottky barrier diodes. Chinese Phys. B 21, 017103 (2012).

    Article  Google Scholar 

  32. B. Song, M. Zhu, Z. Hu, K. Nomoto, D. Jena, and H. G. Xing, Design and optimization of GaN lateral polarization-doped super-junction (LPSJ): An analytical study, in 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC’s (ISPSD) (IEEE, Hong Kong, China, 2015), pp. 273–276.

Download references

Acknowledgments

Financial support is acknowledged from Guangdong Science and Technology Plan Project (Grant No. 2019B010130001), Key-Area Research and Development Program of Guangdong Province (Grant No. 2020B0101030008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-An Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, F., Zhang, K., Zeng, N. et al. 2.2 kV Breakdown Voltage AlGaN/GaN Schottky Barrier Diode with Polarization Doping Modulated 3D Hole Gas Cap Layer and Polarization Junction Structure. J. Electron. Mater. 51, 3613–3623 (2022). https://doi.org/10.1007/s11664-022-09605-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09605-8

Keywords

Navigation