Skip to main content
Log in

Theoretical Investigation of the Effect of Different Dopants and Their Positions on the Magnetic Properties of an Armchair Graphene Nanoribbon

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, by using the density functional theory, we have comprehensively investigated the magnetic properties of an armchair graphene nanoribbon (AGNR) passivated by hydrogen atoms and doped with transition metal elements such as Fe, Co and Mn in different substitution positions and various densities of impurity atoms. Magnetic properties such as spin polarization and magnetic moments of AGNR have been investigated versus the distance of dopants from the ribbon’s edge and the number of dopants. The results show that the values of spin band gap, spin polarization and magnetic moment can considerably vary depending on the type, position and the number of dopants. By comparing all three impurity atoms, we conclude that the substitution of the Mn instead of carbon produces higher magnetization than Fe and Co substitutions. Also, our results show that the spin filter efficiency of Mn-doped ribbon is higher those doped of Fe- and Co-doped. We expect that obtained results will have potential applications in spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Terrones, A.R. Botello-Mendez, J. Campos-Delgado, F. Lopez-Urias, Y.I. Vega-Cantu, F.J. Rodriguez-Macias, A.L. Elias, E. Munoz-Sandoval, A.G. Cano-Marquez, J.C. Charlier, and H. Terrones, Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5, 351–372 (2010).

    Article  Google Scholar 

  2. S. Sehar, F. Sher, S. Zhang, U. Khalid, J. Sulejmanovic, and E.C. Lima, Thermodynamic and kinetic study of synthesised graphene oxide-CuO nanocomposites: a way forward to fuel additive and photocatalytic potentials. J. Mol. Liq. 313, 113494 (2020).

    Article  CAS  Google Scholar 

  3. M. Javan, R. Jorjani, and A. Soltani, Theoretical study of nitrogen, boron, and co-doped (B, N) armchair graphene nanoribbons. J. Mol. Model. 26, 1–10 (2020).

    Article  Google Scholar 

  4. J. Chen, Y. Hu, and H. Guo, First-principles analysis of photo-current in graphene PN Junctions. Phys. Rev. B 85, 155441 (2012).

    Article  Google Scholar 

  5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  6. V. Nam Do and P. Dollfus, Negative differential resistance in zigzag-edge graphene nanoribbon junctions. J. Appl. Phys. 107, 063705 (2010).

    Article  Google Scholar 

  7. Y. An, W. Ji, and Z. Yang, Z-like conducting pathways in zigzag graphene nanoribbons with edge protrusions. J. Phys. Chem. C 116, 5915–5919 (2012).

    Article  CAS  Google Scholar 

  8. A. Hazra, R. Goswami, Carbon nanomaterial electronics: devices and applications, Adv. Sustain. Sci. Technol., 165-198 (2021).

  9. N. Gorjizadeh, and Y. Kawazoe, Magnetic properties of Mn doped armchair graphene nanoribbon. Mater. Trans. 49, 2445–2447 (2008).

    Article  CAS  Google Scholar 

  10. C. Cao, L.N. Chen, M.Q. Long, W.R. Huang, and X. Hui, Electronic transport properties on transition-metal terminated zigzag graphene nanoribbons. J. Appl. Phys. 111, 113708 (2012).

    Article  Google Scholar 

  11. Y. Wang and H.P. Cheng, Interedge magnetic coupling in transition-metal terminated graphene nanoribbons. Phys. Rev. B 83, 113402 (2011).

    Article  Google Scholar 

  12. M. Wu, X.C. Zeng and P. Jena, Unusual magnetic properties of functionalized graphene nanoribbons. J. Phys. Chem. Lett. 4, 2482–2488 (2013).

    Article  CAS  Google Scholar 

  13. N.K. Jaiswal and P. Srivastava, Fe-doped armchair graphene nanoribbons for spintronic/interconnect applications. IEEE Trans. Nanotechnol. 12, 685–691 (2013).

    Article  CAS  Google Scholar 

  14. B. Li, D. Xu, J. Zhao, H. Zeng, First principles study of electronic and magnetic properties of co-doped armchair graphene nanoribbons, J. Nanomater. (2015).

  15. Y. Yu-E, Y. Xiao, X.H. Yan, and C.J. Dai, Transport properties of zigzag graphene nanoribbons adsorbed with single iron atom. Chin. Phys. B 24, 117204 (2015).

    Article  Google Scholar 

  16. N. Tyagi, N.K. Jaiswal, K.K. Jha, V. Sharma, and P. Srivastava, Structural, magnetic and electronic properties of armchair graphene nanoribbons interacting with Co: DFT investigations. Ferroelectrics 519, 178–186 (2017).

    Article  CAS  Google Scholar 

  17. O. Omeroglu, E. Kutlu, P. Narin, S.B. Lisesivdin, and E. Ozbay, Electronic properties of graphene nanoribbons doped with zinc, cadmium, mercury atoms. Physica E 104, 124–129 (2018).

    Article  CAS  Google Scholar 

  18. D.J. Adams, O. Gröning, C.A. Pignedoli, P. Ruffieux, R. Fasel, and D. Passerone, Stable ferromagnetism and doping-induced half-metallicity in asymmetric graphene nanoribbons. Phys. Rev. B 85, 245405 (2012).

    Article  Google Scholar 

  19. D.W. Boukhvalov and M.I. Katsnelson, Chemical functionalization of graphene with defects. Nano Lett. 8, 4373–4379 (2008).

    Article  CAS  Google Scholar 

  20. J. Jung and A.H. MacDonald, Magnetoelectric coupling in zigzag graphene nanoribbons. Phys. Rev. B 81, 195408 (2010).

    Article  Google Scholar 

  21. Y.L. Lee, S. Kim, C. Park, J. Ihm, and Y.W. Son, Controlling half-metallicity of graphene nanoribbons by using a ferroelectric polymer. ACS Nano 4, 1345–1350 (2010).

    Article  CAS  Google Scholar 

  22. J. Zhou, T. Hu, J.M. Dong, and Y. Kawazoe, Ferromagnetism in a graphene nanoribbon with grain boundary defects. Phys. Rev. B 86, 035434 (2012).

    Article  Google Scholar 

  23. B. Huang, Electronic properties of boron and nitrogen doped graphene nanoribbons and its application for graphene electronics. Phys Lett A. 375, 845–848 (2011).

    Article  CAS  Google Scholar 

  24. S. Varghese, S. Swaminathan, K. Singh, and V. Mittal, Energetic stabilities, structural and electronic properties of monolayer graphene doped with boron and nitrogen atoms. Electronics 5, 91 (2016).

    Article  Google Scholar 

  25. D. Zhang, M. Long, X. Zhang, F. Ouyang, M. Li, and H. Xu, Designing of spin-filtering devices in zigzag graphene nanoribbons heterojunctions by asymmetric hydrogenation and B-N doping. J. Appl. Phys. 117, 014311 (2015).

    Article  Google Scholar 

  26. T. Movlarooy, and P. Zanganeh, Spin transport properties of armchair graphene nanoribbons doped with Fe and B atoms. Mater. Sci. B 243, 167–174 (2019).

    CAS  Google Scholar 

  27. F. Lopez-Urias, J.L. Fajardo-DiAZ, A.J. Cortes-Lopez, C.L. Rodriguez-Corvera, L.E. Jimenez-Ramirez, and E. Munoz-Sandoval, Spin-dependent band-gap driven by nitrogen and oxygen functional groups in zigzag graphene nanoribbons. Appl. Surf. Sci. 521, 146435 (2020).

    Article  CAS  Google Scholar 

  28. F. Lopez-Urias, A.D. Martinez-Iniesta, A. Morelos-Gomez, and E. Munoz-Sandoval, Tuning the electronic and magnetic properties of graphene nanoribbons through phosphorus doping and functionalization. Mater. Chem. Phys. 265, 124450 (2021).

    Article  CAS  Google Scholar 

  29. C. Chen, Z. Zhu, D. Zha, M. Qi, and J. Wu, The magnetic and transport properties of edge passivated silicenenanoribbon by Mn atoms. Chem. Phys. Lett. 646, 148–152 (2016).

    Article  CAS  Google Scholar 

  30. C. Guo, T. Wang, C. Xia, and Y. Liu, Modulation of electronic transport properties in armchair phosphorene nanoribbons by doping and edge passivation. Sci. Rep. 7, 12799 (2017).

    Article  Google Scholar 

  31. N. Liu, H. Zhu, Y. Feng, S. Zhu, K. Yao, and S. Wang, Tuning of the electronic structures and spin-dependent transport properties of phosphorene nanoribbons by vanadium substitutional doping. Phys. E Low-dimens. Syst. Nanostruct. 138, 115067 (2022).

    Article  CAS  Google Scholar 

  32. Y.W. Son, M.L. Cohen, and S.G. Louire, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).

    Article  Google Scholar 

  33. M.Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  Google Scholar 

  34. V. Barone, O. Hod, and G.E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748 (2006).

    Article  CAS  Google Scholar 

  35. N.K. Jaiswal and P. Srivastava, Enhanced metallicity and spin polarization in zigzag graphene nanoribbons with Fe impurities. Physica E. 54, 103–108 (2013).

    Article  CAS  Google Scholar 

  36. S. Chakrabarty, A.H.M. Abdul Wasey, R. Thap, and G.P. Dasa, Origin of spin polarization in edge boron doped zigzag graphene nanoribbon: a potential spin filter. Nanotechnology 29, 345203 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal Barvestani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This study did not involve human participants, their data or biological material.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allahverdikhani, T., Barvestani, J. & Meshginqalam, B. Theoretical Investigation of the Effect of Different Dopants and Their Positions on the Magnetic Properties of an Armchair Graphene Nanoribbon. J. Electron. Mater. 51, 2900–2908 (2022). https://doi.org/10.1007/s11664-022-09574-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09574-y

Keywords

Navigation