Skip to main content
Log in

Protrusion of Through-Silicon-Via (TSV) Copper with Double Annealing Processes

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Copper filled through silicon via (TSV-Cu) is a crucial technology for chip stacking and three-dimensional (3D) vertical packaging. The multiple thermal loadings caused by the annealing process and deposition of interconnected dielectric layers lead to continuous TSV-Cu protrusions, which can affect its reliability severely. In this paper, the relationship between second protrusion height of TSV-Cu and its microstructur characteristics during double annealing is quantitatively investigated. It is found that grain size of TSV-Cu after annealing once is larger, and the second protrusion value under additional annealing can be greatly reduced. The reduction phenomenon of second protrusion is relative to the microstructure characteristics such as <111> texture and Σ3 grain boundary type. In addition, stress and strain are analyzed by finite element analysis (FEA) to reveal the reduction mechanisms of the second protrusion height of TSV-Cu during double annealing. The initial residual stress of fabricated TSV-Cu and its mechanical property parameters measured by nanoindentation test are incorporated in FEA. The main results show that additional thermal loading leads to a smaller increase of equivalent plastic strain (PEEQ) and von Mises stress if the TSV-Cu is annealed firstly at a high temperature of 400°C. This verifies the second protrusion tendency of TSV-Cu, and explains the reduction mechanisms of the second protrusion height of TSV-Cu.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data sets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J.P. Gambino, S.A. Adderly, and J.U. Knickerbocker, Microelec. Eng. 135, 73–106 (2015). https://doi.org/10.1016/j.mee.2014.10.019.

    Article  CAS  Google Scholar 

  2. I. De Wolf, K. Croes, and E. Beyne, IEEE Trans. Compon. Packag. Manuf. Technol. 8, 711–718 (2018). https://doi.org/10.1109/tcpmt.2018.2810321.

    Article  CAS  Google Scholar 

  3. K. Croes, J. De Messemaeker, Y. Li, W. Guo, O. Varela-Pedreira, V. Cherman, M. Stucchi, I. De Wolf, and E. Beyne, IEEE Design Test. 33, 37–45 (2016). https://doi.org/10.1109/mdat.2015.2501302.

    Article  Google Scholar 

  4. P.C. Huang, and C.C. Lee, Materials (Basel). (2021). https://doi.org/10.3390/ma14185226.

    Article  Google Scholar 

  5. W. Feng, N. Watanabe, H. Shimamoto, M. Aoyagi, and K. Kikuchi, Microelectr. Reliab. 99, 125–131 (2019). https://doi.org/10.1016/j.microrel.2019.05.021.

    Article  CAS  Google Scholar 

  6. J.M. Chan, K.C. Lee, and C.S. Tan, IEEE Trans. Dev. Mater. Reliab. 18, 520–528 (2018). https://doi.org/10.1109/tdmr.2018.2880286.

    Article  CAS  Google Scholar 

  7. M. Mariappan, J. Bea, T. Fukushima, E. Ikenaga, H. Nohira, and M. Koyanagi, Jap. J. Appl. Phys. (2017). https://doi.org/10.7567/jjap.56.04cc08.

    Article  Google Scholar 

  8. Z. Cheng, Y. Ding, L. Xiao, B. Yang, and Z. Chen, Microelectr. Reliab. (2021). https://doi.org/10.1016/j.microrel.2021.114178.

    Article  Google Scholar 

  9. S.-H. Kee, W.-J. Kim, and J.-P. Jung, Microelec. Eng. 214, 5–14 (2019). https://doi.org/10.1016/j.mee.2019.04.019.

    Article  CAS  Google Scholar 

  10. Y. Kim, S. Jin, K. Park, J. Lee, J.H. Lim, and B. Yoo, Front Chem. 8, 771 (2020). https://doi.org/10.3389/fchem.2020.00771.

    Article  CAS  Google Scholar 

  11. T.-C. Lin, C.-L. Liang, S.-B. Wang, Y.-S. Lin, C.-L. Kao, D. Tarng, and K.-L. Lin, Scripta Mater. (2021). https://doi.org/10.1016/j.scriptamat.2021.113782.

    Article  Google Scholar 

  12. M. Sung, A. Lee, T. Kim, Y. Yoon, T. Lim, and J.J. Kim, J. Electrochem. Soc. 166, D514–D520 (2019). https://doi.org/10.1149/2.1251912jes.

    Article  CAS  Google Scholar 

  13. F. Qin, M. Zhang, Y. Dai, P. Chen, T. An, H. He, H. Zhang, and J. Zheng, Fatigue Fract. Eng. Mater. Struct. 43, 1433–1455 (2020). https://doi.org/10.1111/ffe.13206.

    Article  CAS  Google Scholar 

  14. M. Song, Z. Wei, B. Wang, L. Chen, L. Chen, and J.A. Szpunar, Mater. Sci. Eng. A. 755, 66–74 (2019). https://doi.org/10.1016/j.msea.2019.03.130.

    Article  CAS  Google Scholar 

  15. Y. Dai, M. Zhang, F. Qin, P. Chen, and T. An, Eng. Fract. Mech. 209, 274–300 (2019). https://doi.org/10.1016/j.engfracmech.2019.01.030.

    Article  Google Scholar 

  16. G. Chen, R. Sundaram, A. Sekiguchi, K. Hata, D.N. Futaba, and A.C.S. Appl, Nano Mater. 4, 869–876 (2020). https://doi.org/10.1021/acsanm.0c03278.

    Article  CAS  Google Scholar 

  17. A. Eslami Majd, I.H. Jeong, J.P. Jung, and N.N. Ekere, J. Mater. Eng. Perform. 30, 4712–4720 (2021). https://doi.org/10.1007/s11665-021-05775-4.

    Article  CAS  Google Scholar 

  18. G. Jalilvand, O. Ahmed, N. Dube, and T. Jiang, IEEE Trans. Compon. Packag. Manuf. Technol. 11, 883–891 (2021). https://doi.org/10.1109/tcpmt.2021.3078772.

    Article  CAS  Google Scholar 

  19. Y. Zare, Y. Sasajima, and J. Onuki, J. Electron. Mater. 49, 3692–3700 (2020). https://doi.org/10.1007/s11664-020-08076-z.

    Article  CAS  Google Scholar 

  20. H. Yang, T.-K. Lee, L. Meinshausen, and I. Dutta, J. Electron. Mater. 48, 159–169 (2018). https://doi.org/10.1007/s11664-018-6805-5.

    Article  CAS  Google Scholar 

  21. S.-K. Ryu, T. Jiang, K.H. Lu, J. Im, H.-Y. Son, K.-Y. Byun, R. Huang, and P.S. Ho, Appl. Phys. Lett. (2012). https://doi.org/10.1063/1.3678020.

    Article  Google Scholar 

  22. W.S. Kwon, D.T. Alastair, K.H. Teo, S. Gao, T. Ueda, T. Ishigaki, K.T. Kang, and W.S. Yoo, Appl. Phys. Lett. (2011). https://doi.org/10.1063/1.3596443.

    Article  Google Scholar 

  23. S. Chen, Y.F. En, G.Y. Li, Z.Z. Wang, R. Gao, R. Ma, L.X. Zhang, and Y. Huang, Microelectr. Reliab. (2020). https://doi.org/10.1016/j.microrel.2020.113826.

    Article  Google Scholar 

  24. S.-K. Ryu, Q. Zhao, M. Hecker, H.-Y. Son, K.-Y. Byun, J. Im, P.S. Ho, and R. Huang, J. Appl. Phys. (2012). https://doi.org/10.1063/1.3696980.

    Article  Google Scholar 

  25. L. Spinella, T. Jiang, N. Tamura, J.-H. Im, and P.S. Ho, IEEE Trans. Dev. Mater. Reliab. 19, 568–571 (2019). https://doi.org/10.1109/tdmr.2019.2933794.

    Article  CAS  Google Scholar 

  26. Y. Cho, F. Shafiei, B.S. Mendoza, M. Lei, T. Jiang, P.S. Ho, and M.C. Downer, Appl. Phys. Lett. (2016). https://doi.org/10.1063/1.4946773.

    Article  Google Scholar 

  27. C. Okoro, L.E. Levine, R. Xu, and Y. Obeng, J. Mater. Sci. 50, 6236–6244 (2015). https://doi.org/10.1007/s10853-015-9184-9.

    Article  CAS  Google Scholar 

  28. A.S. Budiman, H.A.S. Shin, B.J. Kim, S.H. Hwang, H.Y. Son, M.S. Suh, Q.H. Chung, K.Y. Byun, N. Tamura, M. Kunz, and Y.C. Joo, Microelectr. Reliab. 52, 530–533 (2012). https://doi.org/10.1016/j.microrel.2011.10.016.

    Article  CAS  Google Scholar 

  29. H.-A.S. Shin, B.-J. Kim, J.-H. Kim, S.-H. Hwang, A.S. Budiman, H.-Y. Son, K.-Y. Byun, N. Tamura, M. Kunz, D.-I. Kim, and Y.-C. Joo, J. Electron. Mater. 41, 712–719 (2012). https://doi.org/10.1007/s11664-012-1943-7.

    Article  CAS  Google Scholar 

  30. A. Heryanto, W.N. Putra, A. Trigg, S. Gao, W.S. Kwon, F.X. Che, X.F. Ang, J. Wei, R.I. Made, C.L. Gan, and K.L. Pey, J. Electron. Mater. 41, 2533–2542 (2012). https://doi.org/10.1007/s11664-012-2117-3.

    Article  CAS  Google Scholar 

  31. F.X. Che, W.N. Putra, A. Heryanto, A. Trigg, X. Zhang, and C.L. Gan, IEEE Trans. Compon. Packag. Manuf. Technol. 3, 732–739 (2013). https://doi.org/10.1109/tcpmt.2013.2252955.

    Article  CAS  Google Scholar 

  32. C. Wu, R. Huang, and K.M. Liechti, IEEE Trans. Dev. Mater. Reliab. 17, 355–363 (2017). https://doi.org/10.1109/tdmr.2017.2681580.

    Article  CAS  Google Scholar 

  33. C. Wu, C. Wei, and Y. Li, Micromachines (Basel) (2019). https://doi.org/10.3390/mi10020086.

    Article  Google Scholar 

  34. H.P. Anwar Ali, I. Radchenko, N. Li, and A. Budiman, Mater. Sci. Eng. A. 738, 253–263 (2018). https://doi.org/10.1016/j.msea.2018.09.094.

    Article  CAS  Google Scholar 

  35. R. Shivakumar, S.K. Tippabhotla, V.A. Handara, G. Illya, A.A.O. Tay, F. Novoa, R.H. Dauskardt, and A.S. Budiman, Procedia Eng. 139, 47–55 (2016). https://doi.org/10.1016/j.proeng.2015.09.232.

    Article  Google Scholar 

  36. J. Tracy, N. Bosco, F. Novoa, and R. Dauskardt, Prog. Photovolt. Res. Appl. 25, 87–96 (2016). https://doi.org/10.1002/pip.2817.

    Article  CAS  Google Scholar 

  37. P.C. Lin, H. Chen, H.-C. Hsieh, T.-H. Tseng, H.Y. Lee, and A.T. Wu, Mater. Chem. Phys. 211, 17–22 (2018). https://doi.org/10.1016/j.matchemphys.2018.01.043.

    Article  CAS  Google Scholar 

  38. S.J. Hong, S. Lee, H.J. Yang, H.M. Lee, Y.K. Ko, H.N. Hong, H.S. Soh, C.K. Kim, C.S. Yoon, K.S. Ban, and J.G. Lee, Semicond. Sci. Tech. 19, 1315–1321 (2004). https://doi.org/10.1088/0268-1242/19/11/018.

    Article  CAS  Google Scholar 

  39. S. Uehara, K. Ito, K. Kohama, T. Onishi, Y. Shirai, and M. Murakami, Mater. Trans. 51, 1627–1632 (2010). https://doi.org/10.2320/matertrans.MAW201033.

    Article  CAS  Google Scholar 

  40. K. Agarwal, R. Sahay, A. Baji, A.S. Budiman, and A.C.S. Appl, Polym. Mater. 2, 3491–3504 (2020). https://doi.org/10.1021/acsapm.0c00518.

    Article  CAS  Google Scholar 

  41. R. Sahay, K. Agarwal, A. Subramani, N. Raghavan, A.S. Budiman, and A. Baji, Polymers (2020). https://doi.org/10.3390/polym12102376.

    Article  Google Scholar 

  42. A.S. Budiman, R. Sahay, K. Agarwal, G. Illya, R.G. Widjaja, A. Baji, and N. Raghavan, Polymers (Basel). (2021). https://doi.org/10.3390/polym13193315.

    Article  Google Scholar 

  43. X. Liu, Q. Chen, V. Sundaram, R.R. Tummala, and S.K. Sitaraman, Microelectr. Reliab. 53, 70–78 (2013). https://doi.org/10.1016/j.microrel.2012.06.140.

    Article  CAS  Google Scholar 

  44. P. Kumar, I. Dutta, and M.S. Bakir, J. Electron. Mater. 41, 322–335 (2011). https://doi.org/10.1007/s11664-011-1726-6.

    Article  CAS  Google Scholar 

  45. Y. Chen, W. Su, H.-Z. Huang, P. Lai, X.-L. Lin and S. Chen, Eksploatacja i Niezawodnosc - Maintenance and Reliab. 22, 705-714 (2020). https://doi.org/10.17531/ein.2020.4.14

  46. C. Okoro, J.W. Lau, F. Golshany, K. Hummler, and Y.S. Obeng, IEEE Trans. Electron. Devices. 61, 15–22 (2014). https://doi.org/10.1109/ted.2013.2291297.

    Article  CAS  Google Scholar 

  47. T. Tian, R. Morusupalli, H. Shin, H.Y. Son, K.Y. Byun, Y.C. Joo, R. Caramto, L. Smith, Y.L. Shen, M. Kunz, N. Tamura, and A.S. Budiman, Proc. Eng. 139, 101–111 (2016). https://doi.org/10.1016/j.proeng.2015.09.242.

    Article  CAS  Google Scholar 

  48. V.A. Handara, I. Radchenko, S.K. Tippabhotla, K.R. Narayanan, G. Illya, M. Kunz, N. Tamura, and A.S. Budiman, Sol. Energ. Mater. Sol. Cells. 162, 30–40 (2017). https://doi.org/10.1016/j.solmat.2016.12.028.

    Article  CAS  Google Scholar 

  49. W.J.R. Song, S.K. Tippabhotla, A.A.O. Tay, and A.S. Budiman, Sol. Energ. Mater. Sol. Cells. 187, 241–248 (2018). https://doi.org/10.1016/j.solmat.2018.07.026.

    Article  CAS  Google Scholar 

  50. W.J.R. Song, S.K. Tippabhotla, A.A.O. Tay, and A.S. Budiman, IEEE J. Photovolt. 8, 210–217 (2018). https://doi.org/10.1109/jphotov.2017.2775158.

    Article  Google Scholar 

  51. S.-K. Ryu, T. Jiang, J. Im, P.S. Ho, and R. Huang, IEEE Trans. Dev. Mater. Reliab. 14, 318–326 (2014). https://doi.org/10.1109/tdmr.2013.2261300.

    Article  Google Scholar 

  52. S. Chen, Z. Wang, Y. En, Y. Huang, F. Qin, and T. An, Microelectro. Reliab. 91, 52–66 (2018). https://doi.org/10.1016/j.microrel.2018.08.005.

    Article  CAS  Google Scholar 

  53. I. De Wolf, K. Croes, O. Varela Pedreira, R. Labie, A. Redolfi, M. Van De Peer, K. Vanstreels, C. Okoro, B. Vandevelde, and E. Beyne, Microelectr. Reliab. 51, 1856–1859 (2011). https://doi.org/10.1016/j.microrel.2011.06.003.

    Article  CAS  Google Scholar 

  54. W.C. Oliver, and G.M. Pharr, J. Mater. Res. 19, 3–20 (2004). https://doi.org/10.1557/jmr.2004.19.1.3.

    Article  CAS  Google Scholar 

  55. S. Chen, F. Qin, T. An, P. Chen, B. Xie, and X. Shi, Microelectro. Reliab. 63, 183–193 (2016). https://doi.org/10.1016/j.microrel.2016.04.005.

    Article  CAS  Google Scholar 

  56. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Science 304, 422–426 (2004). https://doi.org/10.1126/science.1092905.

    Article  CAS  Google Scholar 

  57. P. Zhang, Z.J. Zhang, L.L. Li, and Z.F. Zhang, Scripta Mater. (2012). https://doi.org/10.1016/j.scriptamat.2012.08.003.

    Article  Google Scholar 

  58. Y. Zhang, G. Ding, H. Wang, and P. Cheng, J. Mater. Sci. Tech. 32, 355–361 (2016). https://doi.org/10.1016/j.jmst.2015.09.008.

    Article  CAS  Google Scholar 

  59. S.-H. Kim, H.-J. Lee, D. Josell, and T.P. Moffat, Electrochim. Acta (2020). https://doi.org/10.1016/j.electacta.2020.135612.

    Article  Google Scholar 

  60. R.E. Kumon, and D.C. Hurley, Thin Solid Films 484, 251–256 (2005). https://doi.org/10.1016/j.tsf.2005.02.033.

    Article  CAS  Google Scholar 

  61. K. B. Yeap, U. D. Hangen, D. Raabe and E. Zschech, in AIP Conference Proceedings (2011), pp 121–128. http://doi.org/https://doi.org/10.1063/1.3615699

  62. A. Basavalingappa, and J.R. Lloyd, IEEE Trans. Dev. Mater. Reliab. 17, 69–79 (2017). https://doi.org/10.1109/tdmr.2017.2655459.

    Article  CAS  Google Scholar 

  63. N. Hansen, Scripta Mater. 51, 801–806 (2004). https://doi.org/10.1016/j.scriptamat.2004.06.002.

    Article  CAS  Google Scholar 

  64. T. Jiang, C. Wu, L. Spinella, J. Im, N. Tamura, M. Kunz, H.-Y. Son, B. Gyu Kim, R. Huang, and P.S. Ho, Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4833020.

    Article  Google Scholar 

  65. A.S. Budiman, G. Illya, V. Handara, W.A. Caldwell, C. Bonelli, M. Kunz, N. Tamura, and D. Verstraeten, Sol. Energy Mater. Sol. Cells 130, 303–308 (2014). https://doi.org/10.1016/j.solmat.2014.07.029.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (61804032, 11672009). The authors also would like to thank the convenience provided by HiSilicon Technologies CO., LIMITED during the study of this paper.

Author information

Authors and Affiliations

Authors

Contributions

ZM contributed to methodology, investigation, data curation, writing—original draft. FQ contributed to resources, conceptualization, supervision, writing—review and editing. SC contributed to resources, investigation. YWD contributed to methodology, investigation, writing—review and editing, supervision. CP contributed to investigation. TA contributed to writing—review and editing. All authors read and contributed to the manuscript.

Corresponding authors

Correspondence to Fei Qin, Si Chen or Yanwei Dai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Qin, F., Chen, S. et al. Protrusion of Through-Silicon-Via (TSV) Copper with Double Annealing Processes. J. Electron. Mater. 51, 2433–2449 (2022). https://doi.org/10.1007/s11664-022-09503-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09503-z

Keywords

Navigation