Skip to main content

Advertisement

Log in

Synthesis and Electrochemical Properties of Layered Birnessite MnO2/Activated Carbon Nanocomposite

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Mesoporous MnO2/activated carbon (AC) nanocomposites are promising materials as anode material in lithium ion batteries which are being considered by researchers due to their low conductivity and considerable irreversible capacity loss. The porous structures of these nanocomposites can facilitate Li ion diffusion into the porous structure. In this paper, MnO2/AC nanocomposites were synthesized by the coating of a MnO2 layer on AC using the reduction reaction of KMnO4 with AC and citric acid. The AC in nanocomposites prepared from walnut shell powder, hydrazine hydrate, and NaCl were used as activating agents. The MnO2/AC nanocomposites were synthesized with mass ratios of 1:4, 1:1, 4:1, and 1:0 and the effect of the annealing process at the temperature of 300°C was investigated. The x-ray diffraction (XRD) patterns of MnO2/AC nanocomposites have shown the growth of the layered birnessite-type MnO2 nanoparticles on the AC. Field emission-scanning electron microscopy (FE-SEM) images of the AC shows cracked surfaces with pieces of sizes from 20 nm to 100 nm and the pore size in the wide range of 20–200 nm. Based on EDS results, decreasing the AC content in MnO2/AC nanocomposites led to the decrease of the weight ratio of carbon before annealing, but increased the weight ratio of carbon after annealing. Fourier-transform infrared (FTIR) spectroscopy results showed the existence of bands attributed to the lattice vibration of Mn−O and the strengthening of the related carbon bands in composites containing AC. The direct and indirect band gaps of MnO2/AC nanocomposites were determined by UV-Vis absorption spectroscopy. For the MnO2/AC nanocomposites with less or equal MnO2 content, the indirect energy gap of MnO2 (≈ 2.4 eV) increases with increasing the MnO2 /AC ratio before annealing, while this gap disappeared after annealing. The direct energy gap of MnO2 in the nanocomposites was always larger than 3.09 eV, due to the nanoscale size of the MnO2 nanoparticles. Comparisons of the direct gaps of 1:4, 1:1, and 4:1 composites before and after annealing imply that the direct gap decreases from 5.88 eV, 5.51 eV, and 6.41 eV before annealing to 5.52 eV, 5.44 eV, and 5.68 eV after annealing, respectively. Electrochemical measurements including voltage capacity and dQ/dV indicate that the MnO2/AC (1:4) nanocomposite anodes demonstrate more than 89% coulombic efficiency and a specific capacity of 1495 mAh/g in 20 mA/g in the first cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Y. Liu, K. Shi, and I. Zhitomirsky, Electrochim. Acta 233, 142 (2017).

    Article  CAS  Google Scholar 

  2. D.-S. Bin, S.-Y. Duan, X.-J. Lin, L. Liu, Y. Liu, Xu. Yan-Song, Y.-G. Sun, X.-S. Tao, A.-M. Cao, and L.-J. Wan, Nano Energy 60, 912 (2019).

    Article  CAS  Google Scholar 

  3. G.A.M. Ali, M.R. Thalji, W.C. Soh, H. Algarni, and K.F. Chong, J. Solid-State Electrochem. 24, 25 (2020).

    Article  CAS  Google Scholar 

  4. M.R. Thalji, G.A.M. Ali, P. Liu, Y.L. Zhong, and K.F. Chong, Chem. Eng. J. 409, 128216 (2021).

    Article  CAS  Google Scholar 

  5. G.A.M. Ali, M.M. Yusoff, H. Algarni, and K.F. Chong, Ceramic Int. 44, 7799 (2018).

    Article  CAS  Google Scholar 

  6. L. Naderi, S. Shahrokhian, and F. Soavi, J. Mater. Chem. A 8, 19588 (2020).

    Article  CAS  Google Scholar 

  7. A. Abbasnezhad, H. Asgharzadeh, A. Ansari-Hamedani, and S.H. Soytas, Dalton Trans. 49, 5890 (2020).

    Article  CAS  Google Scholar 

  8. Y. Wu, R. Shu, J. Zhang, Z. Wan, J. Shi, Y. Liu, G. Zhao, and M. Zheng, J. Alloys Compd. 819, 152944 (2020).

    Article  CAS  Google Scholar 

  9. H. Liu, X. Li, and G. Xing, Int. J. Electrochem. Sci. 15, 12220 (2020).

    Article  CAS  Google Scholar 

  10. A. Abdollahi, A. Abnavi, F. Ghasemi, S. Ghasemi, Z. Sanaee, and S. Mohajerzadeh, Electrochim. Acta 390, 138826 (2021).

    Article  CAS  Google Scholar 

  11. P.C. Wang, V. Govindan, C.H. Chiang, and C.G. Wu, Solar RPL 4, 2000247 (2020).

    CAS  Google Scholar 

  12. A. Ramadan, M. Anas, S. Ebrahim, M. Soliman, and A.I. Abou-Aly, Int. J. Hydrogen Energy 45, 16254 (2020).

    Article  CAS  Google Scholar 

  13. N. Wang, W. Li, J. Liang, Y. Huang, Q. Cai, M. Hu, Y. Chen, and Z. Shi, J. Alloys Compd. 846, 156396 (2020).

    Article  CAS  Google Scholar 

  14. M. Ates, and O. Kuzgun, Plastics. Rubber Composites 49, 342 (2020).

    Article  CAS  Google Scholar 

  15. S. Sekar, S. Lee, P. Vijayarengan, K.M. Kalirajan, T. Santhakumar, S. Sekar, and S. Sadhasivam, Nanomaterials 10, 1610 (2020).

    Article  CAS  Google Scholar 

  16. S.M. Hong, E. Jang, A.D. Dysart, V.G. Pol, and K.B. Lee, Sci. Rep. 6, 34590 (2016).

    Article  CAS  Google Scholar 

  17. N. Mojoudi, N. Mirghafari, M. Soleimani, H. Shariatmadari, C. Belver, and J. Bedia, Sci. Rep 9, 19352 (2019).

    Article  CAS  Google Scholar 

  18. O. Boujibar, F. Ghamouss, A. Ghosh, O. Achak, and T. Chafik, J. Power Sour. 436, 226882 (2019).

    Article  CAS  Google Scholar 

  19. M. Karnan, K. Subramani, N. Sudhan, N. Ilayaraja, and M. Sathish, ACS Appl. Mater. Interfaces. 8, 35191 (2016).

    Article  CAS  Google Scholar 

  20. M.S. Shafeeyan, W.M.A.W. Daud, A. Houshmand, and A. Shamiri, J. Anal. Appl. Pyrol. 89, 143 (2010).

    Article  CAS  Google Scholar 

  21. P. Pietrowski, I. Ludwiczak, and J. Tyczkowski, Mater. Sci. 18, 158 (2012).

    Google Scholar 

  22. J. Rivera-Utrilla, M. Sánchez-Polo, V. Gómez-Serrano, P.M. Álvarez, M.C.M. Alvim-Ferraz, and J.M. Dias, J. Hazard. Mater. 187, 1 (2011).

    Article  CAS  Google Scholar 

  23. Z. Heidarinejad, M.H. Dehghani, M. Heidari, G. Javedan, I. Ali, and M. Sillanpää, Environ. Chem. Lett. 18, 393 (2020).

    Article  CAS  Google Scholar 

  24. Y. Gao, Q. Yue, B. Gao, and A. Li, Sci. Total Environ. 746, 141094 (2020).

    Article  CAS  Google Scholar 

  25. X. Zhang, X. Sun, H. Zhang, D. Zhang, and Y. Ma, Mater. Chem. Phys. 137, 290 (2012).

    Article  CAS  Google Scholar 

  26. R. Liu, E. Liu, R. Ding, K. Liu, Y. Teng, Z. Luo, Z. Li, T. Hu, and T. Liu, Ceram. Int. 41, 12734 (2015).

    Article  CAS  Google Scholar 

  27. T. Huang, Z. Qiu, D. Wu, and Z. Hu, Int. J. Electrochem. Sci. 10, 6312 (2015).

    CAS  Google Scholar 

  28. J. Zhang, J. Sun, T.A. Shifa, D. Wang, X. Wu, and Y. Cui, Chem. Eng. J. 372, 1047 (2019).

    Article  CAS  Google Scholar 

  29. W. Dang, C. Dong, Z. Zhang, G. Chen, Y. Wang, and H. Guan, Electrochim. Acta 217, 16 (2016).

    Article  CAS  Google Scholar 

  30. L. Li, Q. Lu, J. Xiao, J. Li, H. Mi, R. Duan, J. Li, W. Zhang, X. Li, S. Liu, K. Yang, M. Wu, and Y. Zhang, J. Power Sources 363, 9 (2017).

    Article  CAS  Google Scholar 

  31. K. Ahmad, A. Mohammad, and S.M. Mobin, Electrochim. Acta 252, 549 (2017).

    Article  CAS  Google Scholar 

  32. K. Gong, P. Yu, L. Su, S. Xiong, and L. Mao, J. Phys. Chem. C 111, 1882 (2007).

    Article  CAS  Google Scholar 

  33. S. Orsini, E. Pargoletti, A. Vertova, A. Minguzzi, C. Locatellia, S. Rondinini, and G. Cappelletti, J. Electroanal. Chem. 808, 439 (2018).

    Article  CAS  Google Scholar 

  34. E. Pargoletti, V. Pifferi, L. Falciola, G. Facchinetti, A. Re Depaolini, E. Davoli, M. Marelli, and G. Cappelletti, Appl. Surf. Sci. 472, 118 (2019).

    Article  CAS  Google Scholar 

  35. M. Qin, H. Zhao, W. Yang, Y. Zhou, and F. Li, R. Soc. Chem. 6, 23905 (2016).

    CAS  Google Scholar 

  36. L. Wang, Y. Wu, S. Liu, Y. Zhang, Y. Chen, H. Ma, Z. Zhu, and J. Zhou, BioResearch 14, 7193 (2019).

    Article  CAS  Google Scholar 

  37. Y. Liu, S. Zuo, B. Shen, Y. Wang, and H. Xia, Int. J. Electreochem. Sci. 15, 7646 (2020).

    Article  CAS  Google Scholar 

  38. Y. Yang, M. Shi, Y.S. Li, and Z.W. Fu, J. Electrochem. Soc. 159, A1917 (2012).

    Article  CAS  Google Scholar 

  39. S. Saha, P. Maji, D.A. Pethsangave, A. Roy, A. Ray, S. Some, and S. Das, Electrochim. Acta 317, 199 (2019).

    Article  CAS  Google Scholar 

  40. X. Tan, S. Liu, Q. Guo, J. Zhang, S. Liang, M. He, and J. Luo, Int. J. Energy Res. 44, 4556 (2020).

    Article  CAS  Google Scholar 

  41. G.T. Xia, C. Li, K. Wang, and L.W. Li, Sci. Adv. Mater. 11, 1079 (2019).

    Article  CAS  Google Scholar 

  42. G.R. Li, Z.P. Feng, Y.N. Ou, D. Wu, R. Fu, and Y.X. Tong, Langmuir 26, 2209 (2010).

    Article  CAS  Google Scholar 

  43. N. Mohammadi, K. Pourreza, N. Bahrami Adeh, and M. Omidvar, J. Alloy Compd. 883, 160874 (2021).

    Article  CAS  Google Scholar 

  44. S. Burhanuddin, A. Yarmo, and B.M. Yamin, AIP Conf. Proc. 1571, 932 (2013).

    Article  CAS  Google Scholar 

  45. C.M. Julien, and A. Mauger, Nanomaterials 7, 396 (2017).

    Article  CAS  Google Scholar 

  46. A. Hashem, H. Abuzeid, M. Kaus, S. Indris, H. Ehrenberg, A. Mauger, and C.M. Julien, Electrochim. Acta 262, 74 (2018).

    Article  CAS  Google Scholar 

  47. Y.P.S. Putri, and A. Awaluddin, Adv. Eng. Res. 190, 75 (2019).

    Google Scholar 

  48. X. Wang, Y. Yang, L. Tao, and M. He, Chem. Geol. 579, 120336 (2021).

    Article  CAS  Google Scholar 

  49. W. Yao, H. Zhou, and Y. Lu, J. Power Sour. 241, 359 (2013).

    Article  CAS  Google Scholar 

  50. M. Huang, Y. Zhang, F. Li, L. Zhang, R.S. Ruoff, Z. Wen, and Q. Liu, Sci. Rep. 4, 1 (2013).

    Google Scholar 

  51. K.P. Luchty, and J.L. Mendoza-Cortes, J. Phys. Chem. C 119, 22838 (2016).

    Article  CAS  Google Scholar 

  52. G.A.M. Ali, M.M. Yusoff, Y.H. Ng, H.N. Lim, and K.F. Chong, Curr. Appl. Phys. 15, 1143 (2015).

    Article  Google Scholar 

  53. F. Li, Y. Xing, M. Huang, K.L. Li, T.T. Yu, Y.X. Zhang, and D. Losic, J. Mater. Chem. A 3, 7855 (2015).

    Article  CAS  Google Scholar 

  54. H. Xia, M. Lai, and L. Lu, J. Mater. Chem. 20, 6896 (2010).

    Article  CAS  Google Scholar 

  55. S. Lin, K. Li, K. Chen, and D. Xue, Mater. Focus 2, 53 (2013).

    Article  CAS  Google Scholar 

  56. J.H. Park, W.Y. Choi, S. Lee, T.S. Kim, and J.W. Lee, Electrochim. Acta 348, 136310 (2020).

    Article  CAS  Google Scholar 

  57. A.B. Fuertes, and M. Sevilla, ACS Appl. Mater. Interfaces. 7, 4344 (2015).

    Article  CAS  Google Scholar 

  58. M. Ghaly, F.M.S.E. El-Dars, M.M. Hegazy and R.O. Abdel Rahman, Chemical Engineering Journal, 284, 1373, (2016).

  59. K.D. Kwon, K. Refson, and G. Sposito, Geochim. Cosmochim. Acta 73, 4142 (2009).

    Article  CAS  Google Scholar 

  60. L. Xing, C. Cui, C. Ma, and X. Xue, Mater. Lett. 65, 2104 (2011).

    Article  CAS  Google Scholar 

  61. A. Yu, H.W. Park, A. Davies, D.C. Higgins, Z. Chen, and X. Xiao, J. Phys. Chem. Lett. 2, 1855 (2011).

    Article  CAS  Google Scholar 

  62. J. Chen, Y. Wang, X. He, S. Xu, M. Fang, X. Zhao, and Y. Shang, Electrochim. Acta 142, 152 (2014).

    Article  CAS  Google Scholar 

  63. H. Kim, N. Venugopal, J. Yoon, and W.S. Yoon, J. Alloy. Compd. 778, 37 (2019).

    Article  CAS  Google Scholar 

  64. A.A. Voskanyan, C.K. Ho, and K.Y. Chan, J. Power Sour. 421, 162 (2019).

    Article  CAS  Google Scholar 

  65. H. Zeng, B. Xing, C. Zhang, L. Chen, H. Zhao, X. Han, G. Yi, G. Huang, C. Zhang, and Y. Cao, Energy Fuels 34, 2480 (2020).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Bagheri Mohagheghi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaeri, M.A., Bagheri Mohagheghi, M.M. Synthesis and Electrochemical Properties of Layered Birnessite MnO2/Activated Carbon Nanocomposite. J. Electron. Mater. 51, 2412–2432 (2022). https://doi.org/10.1007/s11664-022-09499-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09499-6

Keywords

Navigation