Skip to main content
Log in

Improved Tunability and Energy Storage Density Properties of Low-Loss, Lead-Free (Ba0.50Sr0.50)TiO3 and Ba(Zr0.15Ti0.85)O3 Bilayer Thin Film Stacks

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Multilayer thin films of (Ba0.50Sr0.50)TiO3 (BST) and Ba(Zr0.15Ti0.85)O3 (BZT) were designed and grown using pulsed laser deposition technology. The periodic (BST/BZT)n thin films were deposited on Pt‹111›/SiO2/Si substrates. X-ray diffraction revealed the presence of a polycrystalline, perovskite structure corresponding to the bilayer thin film stacks. Scanning electron microscopy confirmed the multilayer structure without any interdiffusion across layers. It was also found that the dielectric and ferroelectric properties of the thin films were strongly influenced by the periodic heterostructures. The thin film stacks exhibited significantly higher tunability as compared with multilayer thin films grown on various single-crystal substrates such as LaAlO3, MgO and SrTiO3. Possible mechanisms explaining the other observed attributes such as improved dielectric properties and reduced leakage current are discussed. The effect of incorporating a comparatively lower-permittivity thin film in the multilayer stacks is presented. The observed properties of such multilayer structured films will aid in realizing low-loss and highly tunable applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Q. Li, L. Chen, M.R. Gadinski, S.H. Zhang, G.Z. Zhang, H.Y. Li, A. Haque, L.Q. Chen, T.N. Jakson, and Q. Wang, Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576 (2015).

    Article  CAS  Google Scholar 

  2. K. Han, Q. Li, C. Chanthad, M.R. Gadinski, G.Z. Zhang, and Q. Wang, A hybrid material approach toward solution-processable dielectrics exhibiting enhanced breakdown strength and high energy density. Adv. Funct. Mater. 25, 3505 (2015).

    Article  CAS  Google Scholar 

  3. V.S. Puli, P. Li, S. Adireddy, and D.B. Chrisey, Crystal structure, dielectric, ferroelectric and energy storage properties of La-doped BaTiO3 semiconducting ceramics. J. Adv. Dielectrics 5, 1550027 (2015).

    Article  CAS  Google Scholar 

  4. L.B. Kong, S. Li, T.S. Zhang, J.W. Zhai, and F.Y.C. Boey, Electrically tunable dielectric materials and strategies to improve their performances. Prog. Mater. Sci. 55, 840 (2010).

    Article  CAS  Google Scholar 

  5. P. Bao, T.J. Jackson, X. Wang, and M.J. Lancaster, Dielectric characterization of a ferroelectric film in the sub-GHz region. J. Phys. D Appl. Phys. 41, 063001 (2008).

    Article  Google Scholar 

  6. M.W. Cole, and S.P. Alpay, Performance Enhanced Complex Oxide Thin Films for Temperature Stable Tunable Device Applications: A Materials Design and Process Science Prospective. Ferroelectrics—Material (Croatia: InTech, 2011).

    Google Scholar 

  7. Z. Xu, D. Yan, D. Xiao, P. Yu, and J. Zhu, Dielectric enhancement of BaSrTi1.1O3/BaSrTi1.05O3/BaSrTiO3 multilayer thin films prepared by RF magnetron sputtering. Ceram. Int. 39, 1639 (2013).

    Article  CAS  Google Scholar 

  8. M.W. Cole, E. Ngo, S. Hirsch, J.D. Demaree, S. Zhong, and S.P. Alpay, The fabrication and material properties of compositionally multi-layered Ba1−xSrxTiO3 thin films for realization of temperature insensitive tunable phase shifter devices. J. Appl. Phys. 102, 034104 (2007).

    Article  Google Scholar 

  9. D. Peng, J. Cheng, and Z. Meng, Low dielectric dissipation and enhanced tunability of Ba0.6Sr0.4TiO3 thin films by the modified composition and multilayer structure. J. Electroceram. 21, 668 (2008).

    Article  CAS  Google Scholar 

  10. J. Miao, B.P. Zhang, K.H. Chew, and Y. Wang, Improvement of ferroelectric fatigue endurance in multiferroic (Ba0.5Sr0.5)TiO3/(Bi1.05La0.05)FeO3/(Ba0.5Sr0.5)TiO3 sandwich structures. Appl. Phys. Lett. 92, 062902 (2008).

    Article  Google Scholar 

  11. C. Diao, H. Liu, H. Zheng, Z. Yao, J. Iqbal, M. Cao, and H. Hao, Enhanced energy storage properties of BaTiO3 thin films by Ba0.4Sr0.6TiO3 layers modulation. J. Alloys Compd. 765, 362 (2018).

    Article  CAS  Google Scholar 

  12. B. Guigues, J. Guillan, E. Defay, P. Garrec, D. Wolozan, B. Andre, F. Laugier, R. Pantel, X. Gagnard, and M. Aıd, SrTiO3/BaTiO3 multilayers thin films for integrated tunable capacitors applications. J. Eur. Ceram. Soc. 27, 3851 (2007).

    Article  CAS  Google Scholar 

  13. A.N. Tarale, M.M. Sutar, D.J. Salunkhe, P.B. Joshi, S.B. Kulkarni, R.C. Pawar, C.S. Lee, D.M. Phase, M. Gupta, and R.J. Chaudhary, Dielectric properties of sol–gel synthesized SrTiO3/(Ba0.7Sr0.3)TiO3 and SrTiO3/Ba(Zr0.3Ti0.7)O3 thin film heterostructures. J. Mater. Sci. Mater. Electron. 24, 1308 (2013).

    Article  CAS  Google Scholar 

  14. X. Yan, W. Ren, P. Shi, X. Wu, X. Chen, and X. Yao, Ba0.5Sr0.5TiO3/Bi1.5Zn1.0Nb1.5TiO7 multilayer thin films prepared by sol–gel method. Appl. Surf. Sci. 255, 2129 (2008).

    Article  CAS  Google Scholar 

  15. X.Y. Chen, Z.P. Xu, D.X. Yan, Y.S. Fan, J.G. Zhu, and P. Yu, Great enhancement of polarization in the (Ba0.67Sr0.33TiO3/LaNiO3)n multilayer thin films. J. Alloys Compd. 695, 1913 (2017).

    Article  CAS  Google Scholar 

  16. J. Miao, H.Y. Tian, X.Y. Zhou, K.H. Pang, and Y. Wang, Microstructure and dielectric relaxor properties for Ba0.5Sr0.5TiO3/La0.67Sr0.33MnO3 heterostructure. J. Appl. Phys. 101, 084101 (2007).

    Article  Google Scholar 

  17. J. Liao, X. Wei, Z. Xu, X. Wei, and P. Wang, The structure and dielectric properties of a novel kind of doped Ba0.6Sr0.4TiO3 film. Mater. Chem. Phys. 135, 1030 (2012).

    Article  CAS  Google Scholar 

  18. S.X. Wang, M.S. Guo, X.H. Sun, T. Liu, M.Y. Li, and X.Z. Zhao, Tunable, low loss Bi1.5Zn1.0Nb1.5O7/Ba0.6Sr0.4TiO3/Bi1.5Zn1.0Nb1.5O7 sandwich films. Appl. Phys. Lett. 89, 212907 (2006).

    Article  Google Scholar 

  19. S.Z. Wang, J.X. Liao, T.T. Feng, Y.M. Hu, H.Y. Yang, and M.Q. Wu, Structures and dielectric properties of multilayer BST/ST/BST and ST/BST/ST sandwich structures. Integr. Ferroelectr. 170, 120 (2016).

    Article  CAS  Google Scholar 

  20. J. Singh, and S.B. Krupanidhi, Multilayer Bi1.5Zn1.0Nb1.5O7/Ba0.6Sr0.4TiO3/Bi1.5Zn1.0Nb1.5O7 thin films for tunable microwave applications. Appl. Surf. Sci. 257, 2214 (2011).

    Article  CAS  Google Scholar 

  21. Y. Bian, and J. Zhai, Low dielectric loss Ba0.6Sr0.4TiO3/MgTiO3 composite thin films prepared by a sol–gel process. J. Phys. Chem. Solids 75, 759 (2014).

    Article  CAS  Google Scholar 

  22. N. Zhao, L. Wan, L. Cao, D. Yu, S. Yu, and R. Sun, Dielectric enhancement of BaTiO3/BaSrTiO3/SrTiO3 multilayer thin films deposited on Pt/Ti/SiO2/Si substrates by sol–gel method. Mater. Lett. 65, 3574 (2011).

    Article  CAS  Google Scholar 

  23. D. Bao, Multilayered dielectric/ferroelectric thin films and superlattices. Curr. Opin. Solid State Mater. 12, 55 (2008).

    Article  CAS  Google Scholar 

  24. F. Yan, Y. Wang, H.L.W. Chan, and C.L. Choy, Ferroelectric properties of (Ba0.5Sr0.5)TiO3/Pb(Zr0.52Ti0.48)O3/(Ba0.5Sr0.5)TiO3 thin films with platinum electrodes. Appl. Phys. Lett. 82, 4325 (2003).

    Article  CAS  Google Scholar 

  25. Y. Wang, J. Cui, Q. Yuan, Y. Niu, Y. Bai, and H. Wang, Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposite. Adv. Mater. 27, 42 (2015).

    Article  Google Scholar 

  26. T. Maiti, R. Guo, and A.S. Bhalla, Evaluation of experimental resume of BaZrxTi1xO3 with perspective to ferroelectric relaxor family: an overview. Ferroelectrics 425, 4 (2011).

    Article  CAS  Google Scholar 

  27. M.L.V. Mahesh, V.V. Bhanu Prasad, and A.R. James, Enhanced dielectric and ferroelectric properties of lead-free Ba(Zr0.15Ti0.85)O3 ceramics compacted by cold isostatic pressing. J. Alloys Compd. 611, 43 (2014).

    Article  CAS  Google Scholar 

  28. M.L.V. Mahesh, V.V. Bhanuprasad, and A.R. James, Enhanced piezoelectric properties and tunability of lead-free ceramics prepared by high-energy ball milling. J. Electron. Mater. 42, 3547 (2013).

    Article  CAS  Google Scholar 

  29. M.L.V. Mahesh, and A.R. James, Dependence of Ba(Zr0.15Ti0.85)O3 films growth on substrate temperature and oxygen gas pressure prepared by pulsed laser deposition. J. Nanopart. Res. 17, 482 (2015).

    Article  Google Scholar 

  30. M.L.V. Mahesh, A.R. James, and V.V. Bhanu Prasad, In-situ post deposition annealing of lead-free ferroelectric thin films in oxygen rich atmosphere. J. Mater. Sci. Mater. Electron. 26, 4930 (2015).

    Article  CAS  Google Scholar 

  31. Y.L. Li, S.Y. Hu, D. Tenne, A. Soukiassian, D.G. Schlom, L.Q. Chen, X.X. Xi, K.J. Choi, C.B. Eom, A. Saxena, T. Lookman, and Q.X. Jia, Interfacial coherency and ferroelectricity of BaTiO3/SrTiO3 superlattice films. Appl. Phys. Lett. 91, 112914 (2007).

    Article  Google Scholar 

  32. H. Christen, E.D. Specht, S.S. Silliman, and K.S. Harshavardhan, Ferroelectric and antiferroelectric coupling in superlattices of paraelectric perovskites at room temperature. Phys. Rev. B 68, 020101 (2003).

    Article  Google Scholar 

  33. Q. Zhang, J. Zhai, and L.B. Kong, Relaxor ferroelectric materials for microwave tunable applications. J. Adv. Dielect. 2, 123002 (2012).

    Article  Google Scholar 

  34. W.F. Qin, J. Zhu, J. Xiong, J.L. Tang, W.J. Jie, Y. Zhang, and Y.R. Li, Dielectric characteristics of BST/BZT/BST multilayer. Surf. Rev. Lett. 15, 195 (2008).

    Article  CAS  Google Scholar 

  35. M. Liu, C. Ma, J. Liu, G. Collins, C. Chen, F. Xiang, H. Wang, J. He, J. Jiang, E.I. Meletia, and A. Bhalla, Microwave dielectric properties of Mn-doped (Ba, Sr)TiO3//Ba(Zr, Ti)O3 multilayered thin films: optimization of designed structure. Integr. Ferroelectr. 150, 116 (2014).

    Article  CAS  Google Scholar 

  36. N.Y. Chan, G.Y. Gao, Y. Wang, and H.L.W. Chan, Preparation and characterizations of Ba(Zr, Ti)O3/(Ba, Sr)TiO3 heterostructures grown on (LaAlO3)0.3(Sr2AlTaO6)0.35 single crystal substrates by pulsed laser deposition. Thin Solid Films 518, e82 (2010).

    Article  Google Scholar 

  37. O. Nakagawara, T. Shimuta, T. Makino, and S. Arai, Epitaxial growth and dielectric properties of (111) oriented BaTiO3/SrTiO3 superlattices by pulsed-laser deposition. Appl. Phys. Lett. 77, 3257 (2000).

    Article  CAS  Google Scholar 

  38. J. Wang, F. Guan, L. Cui, J. Pan, Q. Wang, and L. Zhu, Achieving high electric energy storage in a polymer nanocomposite at low filling ratios using a highly polarizable phthalocyanine interphase. J. Polym. Sci. Part B Polym. Phys. 52, 1669 (2014).

    Article  CAS  Google Scholar 

  39. Y. Gao, H. Liu, Z. Yao, H. Hao, Z. Yu, and M. Cao, Effect of layered structure on dielectric properties and energy storage density in xBa0.7Sr0.3TiO3–SrTiO3 multilayer ceramics. Ceram. Int. 43, 8418 (2017).

    Article  CAS  Google Scholar 

  40. K.M. Johnson, Variation of dielectric constant with voltage in ferroelectrics and its application to parametric devices. J. Appl. Phys. 33, 2826 (1962).

    Article  Google Scholar 

  41. A.F. Devonshire, Theory of barium titanate. Philos. Mag. 40, 1040 (1949).

    Article  CAS  Google Scholar 

  42. Y.-C. Liang, C.-L. Huang, and C.-Y. Hu, Effects of growth temperature on structure and electrical properties of dielectric (Ba, Sr)TiO3 capacitors with transparent conducting oxide electrodes. J. Alloys Compd. 509, 7948 (2011).

    Article  CAS  Google Scholar 

  43. X.G. Tang, R.K. Zheng, Y.P. Jiang, and H.L.W. Chan, Dielectric properties of (100)-oriented Ba (Zr, Ti)O3/La0.7Ca0.3MnO3 heterostructure thin films prepared by pulsed laser deposition. J. Phys. D Appl. Phys. 39, 3394 (2006).

    Article  CAS  Google Scholar 

  44. A.R. James, and C. Prakash, Ferroelectric properties of pulsed laser deposited Ba(Zr0.15Ti0.85)O3 thin films. Appl. Phys. Lett. 84, 1166 (2004).

    Article  Google Scholar 

  45. T. Bayrak, C.O. Akgun, and E. Godlenberg, Structural, optical and electrical characteristics BaSrTiOx thin films: effect of deposition pressure and annealing. J. Non-Cryst. Solids 475, 76 (2017).

    Article  CAS  Google Scholar 

  46. X.G. Tang, X.X. Wang, K.H. Wong, and H.L.W. Chan, Effects of texture on the dielectric properties of Ba(Zr0.2Ti0.8)O3 thin films prepared by pulsed laser deposition. Appl. Phys. A 81, 1253 (2005).

    Article  CAS  Google Scholar 

  47. S. Yu, C. Zhang, M. Wu, H. Dong, and L. Li, Ultra-high energy density thin-film capacitors with high power density using BaSn0.15Ti0.85O3/Ba0.6Sr0.4TiO3 heterostructure thin films. J. Power Sources 412, 648 (2019).

    Article  CAS  Google Scholar 

  48. Z. Sun, L. Wang, M. Liu, C. Ma, Z. Liang, Q. Fan, L. Lu, X. Lou, H. Wang, and C. Jia, Interface-thickness optimization of lead-free oxide multilayer capacitors for high-performance energy storage. J. Mater. Chem. A 6, 1858 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Defence Research and Development Organization, Ministry of Defence, New Delhi for carrying out the present work. Also, the authors would like to thank the Director of Defence Metallurgical Research laboratory (DMRL) for permitting publication of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. V. Mahesh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahesh, M.L.V., Pal, P., Prasad, V.V.B. et al. Improved Tunability and Energy Storage Density Properties of Low-Loss, Lead-Free (Ba0.50Sr0.50)TiO3 and Ba(Zr0.15Ti0.85)O3 Bilayer Thin Film Stacks. J. Electron. Mater. 51, 727–735 (2022). https://doi.org/10.1007/s11664-021-09329-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09329-1

Keywords

Navigation