Skip to main content
Log in

Influence of Micro@Nano-Al2O3 Structure on Mechanical Properties, Thermal Conductivity, and Electrical Properties of Epoxy Resin Composites

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The interfacial structure between the inorganic filler and epoxy resin matrix in epoxy resin (EP) composites has a great influence on the mechanical properties, thermal conductivity, and electrical properties. In this paper, two micro@nanostructured Al2O3 fillers and their epoxy resin composites were prepared, and their morphology, interfacial bond strength, mechanical properties, thermal conductivity, and electrical properties systematically tested and analyzed. The experimental results show that modification by a nano-Al2O3 coating on the surface of micro-Al2O3 can effectively improve the infiltration of Al2O3 filler and epoxy resin, reduce the interfacial defects caused by weak bonding of Al2O3 filler and epoxy resin, and thus synergistically improve the mechanical properties, thermal conductivity, and electrical properties of epoxy resin composites. The thermal conductivity was improved by 22.5% compared with 22.65% when using micro-Al2O3/EP, the tensile and flexural strength were improved by 36.67% and 20.82%, and the alternating-current breakdown strength was improved by 12.88%. In addition, thermally stimulated current experiments were carried out to study the electron transport properties of micro@nano-Al2O3 epoxy resin composites, revealing that filler nanomodification could improve the trap depth, suppress the carrier transport, and improve the dielectric properties of the composites.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Agrawal, and A. Satapathy, Thermal and dielectric behavior of epoxy composites filled with ceramic micro particulates. J. Compos. Mater. 48, 3755 (2014).

    Article  Google Scholar 

  2. S.H. Tzeng, and J.L. Tsai, Size effect on fracture behaviours of epoxy composites with micron and nano alumina particles. Key Eng. Mater. 334–335, 777 (2007).

    Article  Google Scholar 

  3. P. Nisha, K.I. Dhanalekshmi, and C. Ravichandran, Effect of 4-aminobutyltriethoxysilane modified Al2O3 nanoparticles on the dielectric properties of epoxy nanocomposites for high voltage applications. SILICON 13, 1009 (2021).

    Article  CAS  Google Scholar 

  4. J.T. Lewis, Nanometric dielectrics. Dielectrics and Electrical Insulation IEEE Transactions on 1, 812 (1994)

  5. J. Yu, R. Huo, C. Wu, X. Wu, G. Wang, and P. Jiang, Influence of interface structure on dielectric properties of epoxy/alumina nanocomposites. Macromol. Res. 20, 816 (2012).

    Article  CAS  Google Scholar 

  6. N.H. Rahim, K.Y. Lau, N.A. Muhamad, N. Mohamad, W.A.W.A. Rahman, and A.S. Vaughan, Effects of filler calcination on structure and dielectric properties of polyethylene/silica nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 26, 284 (2019).

    Article  CAS  Google Scholar 

  7. R. Mi, Z. Xing, J. Hao, X. Hu, D. Min, S. Li, and Q. Wu, Effect of morphology and traps on DC conductivity and breakdown of polyethylene nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 27, 489 (2020).

    Article  CAS  Google Scholar 

  8. J.D. Kim, J. Zhu, H. Peng, J.L. Margrave, V.N. Khabashesku, and E.V. Barrera, Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett. 3, 1107 (2003).

    Article  Google Scholar 

  9. S. Li, S. Yu, and Y. Feng, Progress in and prospects for electrical insulating materials. High Voltage 1, 122 (2016).

    Article  Google Scholar 

  10. J. Li, Y. Ye, J. Li, and Y. Ye, Densification and grain growth of Al2O3 nanoceramics during pressureless sintering. J. Am. Ceram. Soc. 89, 139 (2010).

    Article  Google Scholar 

  11. A. Heiman, E. Lakin, E. Zolotoy Ab Ko, A. Hoffman, Microstructure and stress in nano-crystalline diamond films deposited by DC glow discharge CVD. Diamond Relat. Mater. 11, 601 (2002).

  12. G.O. Berim, and E. Ruckenstein, Nanodrop on a nanorough hydrophilic solid surface: contact angle dependence on the size, arrangement, and composition of the pillars. J. Colloid Interface Sci. 359, 304 (2011).

    Article  CAS  Google Scholar 

  13. P. Adamson, Ellipsometry of anisotropic (sub)nanometric dielectric films on absorbing materials. J. Mod. Opt. 61, 424 (2014).

    Article  Google Scholar 

  14. S. Zhang, X.Y. Cao, Y.M. Ma, Y.C. Ke, J.K. Zhang, and F.S. Wang, The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites. Express Polym. Lett. 5, 581 (2011).

    Article  CAS  Google Scholar 

  15. W. Karnthidaporn, Hathaikarn, Manuspiya, Nantaya, Yanumet, effective surface treatments for enhancing the thermal conductivity of BN-filled epoxy composite. J. Appl. Polym. Sci. 119, 3234 (2010).

    Google Scholar 

  16. M.Z. Khan, F. Wang, L. He, Z. Shen, and M.A. Mehmood, Influence of treated nano-alumina and gas-phase fluorination on the dielectric properties of epoxy resin/alumina nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 27, 410 (2020).

    Article  Google Scholar 

  17. S.S. Vaisakh, M. Hassanzadeh, R. Metz, S. Ramakrishnan, D. Chappelle, J.D. Sudha, and S. Ananthakumar, Effect of nano/micro-mixed ceramic fillers on the dielectric and thermal properties of epoxy polymer composites. Polym. Adv. Technol. 25, 240 (2014).

    Article  CAS  Google Scholar 

  18. Y. Chen, D. Zhang, X. Wu, H. Wang, Y. Xue, R. Wu, Z. Zhang, and Y. Chen, Epoxy/α-alumina nanocomposite with decreased dielectric constant and dielectric loss. Polym. Compos. 39, 2307 (2018).

    Article  Google Scholar 

  19. M.Z. Khan, F. Wang, L. He, Z. Shen, Z. Huang, and M.A. Mehmood, Influence of treated nano-alumina and gas-phase fluorination on the dielectric properties of epoxy resin/alumina nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 27, 410 (2020).

    Article  Google Scholar 

  20. H. Yang, Q. Chen, X. Wang, M. Chi, H. Liu, X. Dielectric and Thermal Conductivity of Epoxy Resin Impregnated Nano-h-BN Modified Insulating Paper Ning. Polymers 11 (2019).

  21. H. Li, L. Li, L. Li, W. Wang, X. Huang, Q. Chen, and F. Lin, Study on the impact of space charge on the lifetime of pulsed capacitors. IEEE Trans. Dielectr. Electr. Insul. 24, 1870 (2017).

    Article  Google Scholar 

  22. T. Tanaka, Dielectric nanocomposites with insulating properties. IEEE Trans. Dielectr. Electr. Insul. 12, 914 (2005).

    Article  CAS  Google Scholar 

  23. J.A. Anta, G. Marcelli, M. Meunier, and N. Quirke, Models of electron trapping and transport in polyethylene: current-voltage characteristics. J. Appl. Physiol. 92, 1002 (2002).

    Article  CAS  Google Scholar 

  24. P. Pfluger, H.R. Zeller, and J. Bernasconi, Hot-electron transport in polymeric dielectrics. Phys. Rev. Lett. 53, 94 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Science and Technology Project of SGCC (52094020006W).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Du.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mai, Y., Du, B., Liu, Q. et al. Influence of Micro@Nano-Al2O3 Structure on Mechanical Properties, Thermal Conductivity, and Electrical Properties of Epoxy Resin Composites. J. Electron. Mater. 51, 232–242 (2022). https://doi.org/10.1007/s11664-021-09283-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09283-y

Keywords

Navigation