Skip to main content
Log in

Accurate Phase Change Behavior Characterization Of Ultrathin Sb-Rich Films Based On Superlattice-like Al/Ge10Sb90 System

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Sb-rich films, such as Ge10Sb90, having ultra-fast phase change speed are promising chalcogenide materials for phase change memory (PCM) applications. However, it is difficult to accurately observe the phase change properties of ultrathin Sb-rich films due to their volatilization at higher temperatures. In this work, we establish a strategy to characterize ultrathin phase change behavior based specifically on Al/Ge10Sb90 superlattice-like (SLL) structures. It is confirmed that the Al layers, which can form a retardant layer without phase change behavior, can efficiently inhibit the volatilization of Ge10Sb90 films. In addition, the crystallization temperature can be modulated by varying the thickness ratio in SLL structures. In particular, the film of [Al(10nm)/Ge10Sb90(2nm)]5 is one of the promising candidates owing to their high crystallization temperature, good operating temperature for 10 years and excellent surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Wuttig, Phase-change materials: Towards a universal memory? Nat. Mater. 4, 265 (2005).

    Article  CAS  Google Scholar 

  2. Y. Lu, M. Stegmaier, P. Nukala, M.A. Giambra, S. Ferrari, A. Busacca, W.H. Pernice, and R. Agarwal, Mixed-mode operation of hybrid phase-change nanophotonic circuits. Nano Lett. 17, 150 (2016).

    Article  Google Scholar 

  3. J. Wang, L. Wang, and J. Liu, Overview of phase-change materials based photonic devices. IEEE Access 8, 121211 (2020).

    Article  Google Scholar 

  4. H. Zou, X. Zhu, Y. Hu, Y. Sui, W. Wu, J. Xue, L. Zheng, and Z. Song, Improvement of the thermal stability of Sb thin film through erbium doping. CrystEngComm 18, 6365 (2016).

    Article  CAS  Google Scholar 

  5. S.J. Baik, G. Kim, H. Horii, and D.-H. Ahn, Control of microstructural phase distribution in Ge2Sb2Te5 phase change memory cells. Phys. Status Solidi A 216, 1900196 (2019).

    Article  Google Scholar 

  6. F. Rao, Z. Song, K. Ren, X. Li, L. Wu, W. Xi, and B. Liu, Sn12Sb88 material for phase change memory. Appl. Phys. Lett. 95, 032105 (2009).

    Article  Google Scholar 

  7. H. Zou, Y. Hu, X. Zhu, Y. Sun, L. Zheng, Y. Sui, S. Wu, and Z. Song, Improvement in reliability and power consumption based on Ge10Sb90 films through erbium doping. J. Mater. Sci. 52, 5216 (2017).

    Article  CAS  Google Scholar 

  8. G. Wang, X. Shen, Q. Nie, R. Wang, L. Wu, Y. Lv, F. Chen, J. Fu, S. Dai, and J. Li, Improved thermal and electrical properties of Al-doped Ge2Sb2Te5 films for phase-change random access memory. J. Phys. D Appl. Phys. 45, 375302 (2012).

    Article  Google Scholar 

  9. X. Shen, J. Li, G. Wang, Z. Wang, Y. Lu, and S. Dai, Fast crystallization of Mg-doped Sb4Te for phase change memory. Vacuum 112, 33 (2015).

    Article  CAS  Google Scholar 

  10. M. Zhu, K. Ren, and Z. Song, Ovonic threshold switching selectors for three-dimensional stackable phase-change memory. MRS Bull. 44, 715 (2019).

    Article  Google Scholar 

  11. M. Longo, P. Fantini, and P. Noé, Phase-change memories: materials science, technological applications and perspectives. J. Phys. D Appl. Phys. 53, 440201 (2020).

    Article  CAS  Google Scholar 

  12. L.W. Qu, X.S. Miao, J.J. Sheng, Z. Li, J.J. Sun, P. An, J. Huang, D. Yang, and C. Liu, SET/RESET properties dependence of phase-change memory cell on thickness of phase-change layer. Solid State Electron. 56, 191 (2011).

    Article  CAS  Google Scholar 

  13. L. Zheng, Y. Hu, X. Yang, W. Xie, X. Zhu, T. Lai, and Z. Song, Layer thickness dependence of the phase separation and phase change properties of Ge2Sb2Te5/TiN superlattice-like thin films. Mater. Sci. Eng. B-Adv. 238, 71 (2018).

    Article  Google Scholar 

  14. S. Kim, B. Bae, Y. Zhang, R.G.D. Jeyasingh, Y. Kim, I. Baek, S. Park, S. Nam, and H.P. Wong, One-dimensional thickness scaling study of phase change material Ge2Sb2Te5 using a pseudo 3-terminal device. IEEE T. Electron Dev. 58, 1483 (2011).

    Article  CAS  Google Scholar 

  15. Q. Tang, T. He, K. Yu, Y. Cheng, R. Qi, R. Huang, J. Zhao, W. Song, and Z. Song, The effect of thickness on texture of Ge2Sb2Te5 phase-change films. J. Mater. Sci-Mater. El. 31, 5848 (2020).

    Article  CAS  Google Scholar 

  16. S. Sun, Y. Hu, T. Lai, and X. Zhu, Effect of Mg35Sb65 interlayer on the thermal stability and scaling of Ge2Sb2Te5 phase change thin film. J. Mater. Sci-Mater. El. 32, 6408 (2021).

    Article  CAS  Google Scholar 

  17. Y. Hu, H. Zou, L. Yuan, J. Xue, Y. Sui, W. Wu, J. Zhang, X. Zhu, S. Song, and Z. Song, Improved phase change behavior of Sb2Se material by Si addition for phase change memory. Scripta Mater. 115, 19 (2016).

    Article  CAS  Google Scholar 

  18. M. Takahiro, K. Kenzo, F. Yoshihisa, M. Yuichi, and T. Norikatsu, Characterization of In20Ge15Sb10Te55 phase change material for phase change memory with low power operation and good data retention. Jpn. J. Appl. Phys. 51, 031201 (2012).

    Google Scholar 

  19. S. Sun, Y. Hu, T. Lai, and X. Zhu, Effect of Mg35Sb65 interlayer on the thermal stability and scaling of Ge2Sb2Te5 phase change thin film. J. Mater. Sci-Mater. El. 32, 1 (2021).

    Google Scholar 

  20. Z. Song, D. Cai, Y. Cheng, L. Wang, and G. Feng, 12-state multi-level cell storage implemented in 128 mb phase change memory chip. Nanoscale 13, 10455 (2021).

    Article  CAS  Google Scholar 

  21. H. Zou, L. Zhai, Y. Hu, J. Zhang, X. Zhu, Y. Sun, and Z. Song, Effect of cerium doping on the crystallization behavior of ZnSb for phase-change memory application. Appl. Phys. A 124, 717 (2018).

    Article  Google Scholar 

  22. K. Ren, F. Rao, Z.T. Song, S.L. Lu, C. Peng, M. Zhu, L.C. Wu, B. Liu, S.L. Feng, Phase change material W0.04(Sb4Te)0.96 for application in high-speed phase change memory. J. Alloy. Comp. 594, 82 (2014).

  23. G. Eising, T. Van Damme, and B.J. Kooi, Unraveling crystal growth in GeSb phase-change films in between the glass-transition and melting temperatures. Cryst. Growth Des. 14, 3392 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 22165007), Natural Science Foundation of Hainan Province (521RC505), and the Research Start-up Fund Project of Hainan University (RZ2100003123).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhao Zhang or Hua Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Sui, Y., Zhu, X. et al. Accurate Phase Change Behavior Characterization Of Ultrathin Sb-Rich Films Based On Superlattice-like Al/Ge10Sb90 System. J. Electron. Mater. 51, 190–195 (2022). https://doi.org/10.1007/s11664-021-09271-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09271-2

Keywords

Navigation