Skip to main content
Log in

Synthesis and Characterization of Eco-Friendly CMC/Maghemite Nanocomposite Films

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Maghemite (γ-Fe2O3) nanoparticles were prepared and then incorporated in carboxymethyl cellulose (CMC) polymers using a simple casting method to prepare multifunctional nanocomposite films. The properties of CMC/maghemite nanocomposites were ascertained through several analytical techniques. The intervention of maghemite nanofillers resulted in the adaptability of the structural, optical, and thermal properties of the nanocomposites. Comprehensive investigations of the band structure were achieved through theoretical models, such as Tauc’s model and the Wemple–DiDomenico model. Increasing the content of the maghemite nanoparticles can decrease the absorption edge and both the direct and indirect energy gaps, as well as increase the band tails of the CMC polymer. Simple formulae for the index of refraction and the real part of the dielectric constant were obtained for materials whose extinction coefficient is sufficiently small. Maghemite nanofiller was found to effectively increase the index of refraction and improve the dispersion. The possibility of investigating the energy band structure with the imaginary part of the dielectric constant was also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2:
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Chen, Y. Li, M. Bick, and J. Chen, Chem. Rev. 120, 3668–3720 (2020).

    Article  CAS  Google Scholar 

  2. L. Jin, X. Xiao, W. Deng, A. Nashalian, D. He, V. Raveendran, C. Yan, H. Su, X. Chu, T. Yang, W. Li, W. Yang, and J. Chen, Nano Lett. 20, 6404–6411 (2020).

    Article  CAS  Google Scholar 

  3. S. Pu, Y. Liao, K. Chen, J. Fu, S. Zhang, L. Ge, G. Conta, S. Bouzarif, T. Cheng, X. Hu, K. Liu, and J. Chen, Nano Lett. 20, 3791–3797 (2020).

    Article  CAS  Google Scholar 

  4. C. Yan, Y. Gao, S. Zhao, S. Zhang, Y. Zhou, W. Deng, Z. Li, G. Jiang, L. Jin, G. Tian, T. Yang, X. Chu, D. Xiong, Z. Wang, Y. Li, W. Yang, and J. Chen, Nano Energy 67, 104235 (2020).

    Article  CAS  Google Scholar 

  5. W. Hou, Y. Xiao, G. Han, and J.-Y. Lin, Polymers 11, 143 (2019).

    Article  Google Scholar 

  6. J. Xu, Y. Zou, A. Nashalian, and J. Chen, Front. Chem. 8, 959 (2020).

    Google Scholar 

  7. Y. Zou, J. Xu, Y. Fang, X. Zhao, Y. Zhou, and J. Chen, Nano Energy 83, 105845 (2021).

    Article  CAS  Google Scholar 

  8. V.A. Nguyen, and C. Kuss, J. Electrochem. Soc. 167, 065501 (2020).

    Article  CAS  Google Scholar 

  9. W. Liu, J. Chen, Z. Chen, K. Liu, G. Zhou, Y. Sun, M.-S. Song, Z. Bao, and Y. Cui, Adv. Energy Mater. 7, 1701076 (2017).

    Article  Google Scholar 

  10. J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu, F. Shi, A. Pei, H. Chen, W. Chen, J. Chen, X. Zhang, L. Zong, J. Wang, L.-Q. Chen, J. Qin, and Y. Cui, Nat. Nanotechnol. 14, 705–711 (2019).

    Article  CAS  Google Scholar 

  11. S.-M. Xu, X. Liang, X.-Y. Wu, S.-L. Zhao, J. Chen, K.-X. Wang, and J.-S. Chen, Nat. Commun. 10, 5810 (2019).

    Article  CAS  Google Scholar 

  12. H. Yin, K.S. Hui, X. Zhao, S. Mei, X. Lv, K.N. Hui, and J. Chen, ACS Appl. Energy Mater. 3, 6897–6906 (2020).

    Article  CAS  Google Scholar 

  13. S.I. Ahmed, Z.K. Heiba, N.Y. Mostafa, A.A. Shaltout, and H.S. Aljoudy, Ceram. Int. 44, 20692–20699 (2018).

    Article  CAS  Google Scholar 

  14. W. Wu, Z. Wu, T. Yu, C. Jiang, and W.-S. Kim, Sci. Technol. Adv. Mater. 16, 023501 (2015).

    Article  Google Scholar 

  15. U. Schwertmann, The Iron Oxides : Structure, Properties, Reactions, Occurrences and Uses (2007)

  16. A.N. Shmakov, G.N. Kryukova, S.V. Tsybulya, A.L. Chuvilin, and L.P. Solovyeva, J. Appl. Crystallogr. 28, 141–145 (1995).

    Article  CAS  Google Scholar 

  17. B.P. Hahn, J.W. Long, A.N. Mansour, K.A. Pettigrew, M.S. Osofsky, and D.R. Rolison, Energy Environ. Sci. 4, 1495–1502 (2011).

    Article  CAS  Google Scholar 

  18. M.I. Litter, and M.A. Blesa, Can. J. Chem. 70, 2502 (1992).

    Article  CAS  Google Scholar 

  19. S. Nasibi, H. Nargesi khoramabadi, M. Arefian, M. Hojjati, I. Tajzad, A. Mokhtarzade, M. Mazhar, and A. Jamavari, J. Compos. Compd. 2, 68–75 (2020).

    Google Scholar 

  20. A. Pettignano, A. Charlot, and E. Fleury, Polymers 11, 1227 (2019).

    Article  Google Scholar 

  21. N.F. Mazuki, A.P.P. Abdul Majeed, Y. Nagao, and A.S. Samsudin, Polym. Test. 81, 106234 (2020).

    Article  CAS  Google Scholar 

  22. D. Duquette, and M.J. Dumont, Polym. Bull. Polymer Bulletin 76, 2683–2710 (2019).

    Article  CAS  Google Scholar 

  23. A.M. El Sayed, Nucl. Instrum. Methods Phys. Res., Sect. B 321, 41–48 (2014).

    Article  Google Scholar 

  24. C. Naceur Abouloula, M. Rizwan, V. Selvanathan, C.I. Abdullah, A. Hassan, R. Yahya, and A. Oueriagli, Ionics 24, 3827–3836 (2018).

    Article  CAS  Google Scholar 

  25. J. Ampaiwong, P. Rattanawaleedirojn, K. Saengkiettiyut, N. Rodthongkum, P. Potiyaraj, and N. Soatthiyanon, J. Nanosci. Nanotechnol. 19, 3544–3550 (2019).

    Article  CAS  Google Scholar 

  26. S.C. Daminabo, S. Goel, S.A. Grammatikos, H.Y. Nezhad, and V.K. Thakur, Mater. Today Chem. 16, 100248 (2020).

    Article  CAS  Google Scholar 

  27. T.P. Mohan, and K. Kanny, J. Compos. Mater. 50, 1261–1276 (2016).

    Article  CAS  Google Scholar 

  28. H. Liu, J. Song, S. Shang, Z. Song, and D. Wang, ACS Appl. Mater. Interfaces. 4, 2413–2419 (2012).

    Article  CAS  Google Scholar 

  29. H. Dong, K.E. Strawhecker, J.F. Snyder, J.A. Orlicki, R.S. Reiner, and A.W. Rudie, Carbohyd. Polym. 87, 2488–2495 (2012).

    Article  CAS  Google Scholar 

  30. J.-C. Liu, D.J. Martin, R.J. Moon, and J.P. Youngblood, J. Appl. Polym. Sci. 132, 41970 (2015).

    Google Scholar 

  31. H. Cheng, Q. Qian, X. Wang, P. Yu, and L. Mao, Electrochim. Acta 82, 203–207 (2012).

    Article  CAS  Google Scholar 

  32. Z. Chen, G.-T. Kim, D. Chao, N. Loeffler, M. Copley, J. Lin, Z. Shen, and S. Passerini, J. Power Sources 372, 180–187 (2017).

    Article  CAS  Google Scholar 

  33. A. Moretti, G.-T. Kim, D. Bresser, K. Renger, E. Paillard, R. Marassi, M. Winter, and S. Passerini, J. Power Sources 221, 419–426 (2013).

    Article  CAS  Google Scholar 

  34. L. Zolin, J.R. Nair, D. Beneventi, F. Bella, M. Destro, P. Jagdale, I. Cannavaro, A. Tagliaferro, D. Chaussy, F. Geobaldo, and C. Gerbaldi, Carbon 107, 811–822 (2016).

    Article  CAS  Google Scholar 

  35. F. Bella, J.R. Nair, and C. Gerbaldi, RSC Adv. 3, 15993–16001 (2013).

    Article  CAS  Google Scholar 

  36. F. Bella, D. Pugliese, L. Zolin, and C. Gerbaldi, Electrochim. Acta 237, 87–93 (2017).

    Article  CAS  Google Scholar 

  37. S. Awad, S. ElGamal, A.M. El Sayed, and E.E. AbdelHady, Polym. Adv. Technol. 31, 114–125 (2020).

    Article  CAS  Google Scholar 

  38. A. Abdel-Galil, H.E. Ali, A. Atta, and M.R. Balboul, J. Radiat. Res. Appl. Sci. 7, 36–43 (2014).

    Article  CAS  Google Scholar 

  39. M.S. El-Bana, G. Mohammed, S. El-Gamal, G. Mohammed, A.M. El Sayed, S. El-Gamal, and A.M. El Sayed, Polym. Compos. 39, 3712–3725 (2018).

    Article  CAS  Google Scholar 

  40. X. Wang, C. Yao, F. Wang, and Z. Li, Small 13, 1702240 (2017).

    Article  Google Scholar 

  41. D. Munao, J.W.M. van Erven, M. Valvo, E. Garcia-Tamayo, and E.M. Kelder, J. Power Sources 196, 6695–6702 (2011).

    Article  CAS  Google Scholar 

  42. W.-R. Liu, M.-H. Yang, H.-C. Wu, S.M. Chiao, and N.-L. Wu, Electrochem. Solid-State Lett. 8, A100 (2005).

    Article  CAS  Google Scholar 

  43. F. Bella, S. Galliano, M. Falco, G. Viscardi, C. Barolo, M. Grätzel, and C. Gerbaldi, Green Chem. 19, 1043–1051 (2017).

    Article  CAS  Google Scholar 

  44. A.-H. Lu, E.L. Salabas, and F. Schüth, Angew. Chem. Int. Ed. 46, 1222–1244 (2007).

    Article  CAS  Google Scholar 

  45. J.D. Bernal, D.R. Dasgupta, and A.L. Mackay, Nature 180, 645–647 (1957).

    Article  CAS  Google Scholar 

  46. R. Megha, Y.T. Ravikiran, S. Kotresh, S.C. Vijaya Kumari, H.G. Raj Prakash, and S. Thomas, Cellulose 25, 1147–1158 (2018).

    Article  CAS  Google Scholar 

  47. T. Degen, M. Sadki, E. Bron, U. König, and G. Nénert, Powder Diffr. 29, S13–S18 (2014).

    Article  CAS  Google Scholar 

  48. M.E. Brown, and P.K. Gallagher, Handbook of Thermal Analysis and Calorimetry (Oxford: Elsevier, 2008).

    Google Scholar 

  49. P.E. Gongwer, H. Arisawa, and T.B. Brill, Combust. Flame 109, 370–381 (1997).

    Article  CAS  Google Scholar 

  50. W.H. Feng, Z.X. Pei, Z.B. Fang, M.L. Huang, M.L. Lu, S.X. Weng, Z.Y. Zheng, J. Hu, and P. Liu, J. Mater. Chem. A 2, 7802–7811 (2014).

    Article  CAS  Google Scholar 

  51. M. Sayed, H. El-Maghraby, F. Bondioli, and S. Naga, J. Appl. Pharm. Sci. 8, 23–30 (2018).

    CAS  Google Scholar 

  52. A. Dolgonos, T.O. Mason, and K.R. Poeppelmeier, J. Solid State Chem. 240, 43–48 (2016).

    Article  CAS  Google Scholar 

  53. F. Urbach, Phys. Rev. 92, 1324–1324 (1953).

    Article  CAS  Google Scholar 

  54. M. Aslam, M.A. Kalyar, and Z.A. Raza, J. Electron. Mater. 47, 3912–3926 (2018).

    Article  CAS  Google Scholar 

  55. S.B. Aziz, H.M. Ahmed, A.M. Hussein, A.B. Fathulla, R.M. Wsw, and R.T. Hussein, J. Mater. Sci.: Mater. Electron. 26, 8022–8028 (2015).

    CAS  Google Scholar 

  56. G. Mahshad, and D. Davoud, J. Nanomater. 2013, 897043 (2013).

    Google Scholar 

  57. B.G. Streetman, and S.K. Banerjee, Solid State Electronic Devices (Boston: Pearson, 2016).

    Google Scholar 

  58. M. Abdelaziz, Physica B 406, 1300–1307 (2011).

    Article  CAS  Google Scholar 

  59. M.M. El-Nahass, M. Dongol, M. Abou-zied, and A. El-Denglawey, Physica B 368, 179–187 (2005).

    Article  CAS  Google Scholar 

  60. M. Aslam, M.A. Kalyar, and Z.A. Raza, J. Mater. Sci.: Mater. Electron. 28, 13401–13413 (2017).

    CAS  Google Scholar 

  61. J. Jin, R. Qi, Y. Su, M. Tong, and J. Zhu, Iran. Polym. J. 22, 767–774 (2013).

    Article  CAS  Google Scholar 

  62. J. Rozra, I. Saini, A. Sharma, N. Chandak, S. Aggarwal, R. Dhiman, and P.K. Sharma, Mater. Chem. Phys. 134, 1121–1126 (2012).

    Article  CAS  Google Scholar 

  63. S.H. Wemple, and M. DiDomenico, J. Appl. Phys. 40, 735–752 (1969).

    Article  CAS  Google Scholar 

  64. K. Alfaramawi, Polym. Bull. 75, 5713–5730 (2018).

    Article  CAS  Google Scholar 

  65. J.I. Pankove, and P. Dover, Optical Processes in Semiconductors (New York: Dover Publications Inc, 2018).

    Google Scholar 

  66. Z.K. Heiba, and M.B. Mohamed, J. Mol. Struct. 1181, 507–517 (2019).

    Article  CAS  Google Scholar 

  67. NA Bakr, AM Funde, VS Waman, MM Kamble, RR Hawaldar, DP Amalnerkar, SW Gosavi, and SR Jadkar, Pramana 76, 519–531 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the deanship of scientific research, Taif University, Saudi Arabia, for financial support (research project number: 1-440-6137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameh I. Ahmed.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S.I., Heiba, Z.K., Ibrahim, M.M. et al. Synthesis and Characterization of Eco-Friendly CMC/Maghemite Nanocomposite Films. J. Electron. Mater. 50, 7098–7109 (2021). https://doi.org/10.1007/s11664-021-09237-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09237-4

Keywords

Navigation