Skip to main content
Log in

Improving the Thermal Stability and Oxidation Resistance of Silver Nanowire Films via 2-Mercaptobenzimidazole Modification

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

For electronic devices, a tradeoff exists between the structural stability and electrical conductivity of silver nanowires (Ag NWs). Self-assembled monolayers (SAMs) containing sulfur functional groups formed on the Ag nanowire surface through Ag–S covalent bonds can act as a passivation layer, thereby improving the corrosion resistance. This work explored the effect of 2-mercaptobenzimidazole (MBI) SAM on the thermal and oxidation resistance of Ag NW films. The conductivity, surface morphology, chemical properties, and thermal stability of MBI-modified Ag NW films were analyzed via four-point probe measurements, field-emission scanning electron microscopy, x-ray photoelectron spectroscopy (XPS), and thermal characterization. In particular, the results show that the MBI layer can significantly reduce the oxidation of Ag NW films at room temperature for 60 days. Moreover, the MBI layer improved the thermal stability of the Ag NW films up to 230°C by inhibiting Ag diffusion. The unmodified Ag NW film completely lost conductivity after heating and oxidation treatment. In contrast, the sheet resistance of the Ag NW film modified by 0.1 wt.% MBI only increased from 65 Ω/\(\square\) to 106 Ω/\(\square\), and 156 Ω/\(\square\) after heating treatment and oxidation test, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T. Karasawa, and Y. Miyata, Thin Solid Films 223, 135 (1993).

    Article  CAS  Google Scholar 

  2. G.D. Zhou, S.K. Duan, P. Li, B. Sun, B. Wu, Y.Q. Yao, X.D. Yang, J.J. Han, J.G. Wu, G. Wang, L.P. Liao, C.Y. Lin, W. Hu, C.Y. Xu, D.B. Liu, T. Chen, L.J. Chen, A.K. Zhuo, and Q.L. Song, Adv. Electron. Mater. 4, 1700567 (2018).

    Article  CAS  Google Scholar 

  3. G.D. Zhou, Z.J. Ren, B. Sun, J.G. Wu, Z. Zou, S.H. Zheng, L.D. Wang, S.K. Duan, and Q.L. Song, Nano Energy 68, 104386 (2020).

    Article  CAS  Google Scholar 

  4. Y. Galagan, J.E.J.M. Rubingh, R. Andriessen, C.C. Fan, P.W.M. Blom, S.C. Veenstra, and J.M. Kroon, Sol. Energy Mater Sol. Cells 95, 1339 (2011).

    Article  CAS  Google Scholar 

  5. M. Bansal, R. Srivastava, C. Lal, M.N. Kamalasanan, and L.S. Tanwar, Nanoscale 1, 317 (2009).

    Article  CAS  Google Scholar 

  6. Z.C. Wu, Z.H. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, and A.G. Rinzler, Science 305, 1273 (2004).

    Article  CAS  Google Scholar 

  7. D.H. Zhang, K. Ryu, X.L. Liu, E. Polikarpov, J. Ly, M.E. Tompson, and C.W. Zhou, Nano Lett. 6, 1880 (2006).

    Article  CAS  Google Scholar 

  8. H. Kim, C.M. Gilmore, J.S. Horwitz, A. Piqué, H. Murata, G.P. Kushto, R. Schlaf, Z.H. Kafafi, and D.B. Chrisey, Appl. Phys. Lett. 76, 259 (2000).

    Article  CAS  Google Scholar 

  9. T. Stubhan, I. Litzov, N. Li, M. Salinas, M. Steidl, G. Sauer, K. Forberich, G.J. Matt, M. Halikand, and C.J. Brabec, J. Mater. Chem. A 1, 6004 (2013).

    Article  CAS  Google Scholar 

  10. F.L. Wang, N.K. Subbaiyan, Q. Wang, C. Rochford, G.W. Xu, R.T. Lu, A. Elliot, F. D’Souza, R.Q. Hui, and J. Wu, ACS Appl. Mater. Interfaces 4, 1565 (2012).

    Article  CAS  Google Scholar 

  11. K.C. Sanal, M. Majeesh, and M.K. Jayaraj, Proc SPIE 8818, 14 (2013).

    Google Scholar 

  12. D.Z. Chen, G. Fan, H.X. Zhang, L. Zhou, W.D. Zhu, H. Xi, H. Dong, S.Z. Pang, X.N. He, Z.H. Lin, J.C. Zhang, C.F. Zhang, and Y. Hao, Nanomaterials 9, 932 (2019).

    Article  CAS  Google Scholar 

  13. M.G. Kang, H.J. Park, S.H. Ahn, and L.J. Guo, Sol. Energy Mater Sol. Cells 94, 1179 (2010).

    Article  CAS  Google Scholar 

  14. Y.S. Woo, Micromachines 10, 13 (2018).

    Article  Google Scholar 

  15. X. Wang, L.J. Zhi, and K. Müllen, Nano Lett. 8, 323 (2008).

    Article  CAS  Google Scholar 

  16. T.M. Higgins, and J.N. Coleman, ACS Appl. Mater. Interfaces 7, 16495 (2015).

    Article  CAS  Google Scholar 

  17. A.K. Sahoo, C.S. Yang, C.L. Yen, H.C. Lin, Y.J. Wang, Y.H. Lin, O. Wada, and C.L. Pan, Appl. Sci. 9, 761 (2019).

    Article  CAS  Google Scholar 

  18. S.P. Rwei, Y.H. Lee, J.W. Shiu, R. Sasikumar, and U.T. Shyr, Polymers 11, 134 (2019).

    Article  CAS  Google Scholar 

  19. L.Q. Yang, T. Zhang, H.X. Zhuo, S.C. Price, B.J. Wiley, and W. You, ACS Appl. Mater. Interfaces 3, 4075 (2011).

    Article  CAS  Google Scholar 

  20. L.B. Hu, H.S. Kim, J.Y. Lee, P. Peumans, and Y. Cui, ACS Nano 4, 2955 (2010).

    Article  CAS  Google Scholar 

  21. C.H. Liu, and X. Yu, Nanoscale Res. Lett. 6, 75 (2011).

    Article  CAS  Google Scholar 

  22. R.Y. Zhang, and M. Engholm, Nanomaterials 8, 628 (2018).

    Article  CAS  Google Scholar 

  23. M. Singh, and S. Rana, Mater. Today Commun. 24, 101317 (2020).

    Article  CAS  Google Scholar 

  24. Y.G. Jia, C. Chen, D. Jia, S.X. Li, S.L. Ji, and C.H. Ye, ACS Appl. Mater. Interfaces 8, 9865 (2016).

    Article  CAS  Google Scholar 

  25. W.X. Zhang, W. Song, J.M. Huang, L.K. Huang, T.T. Yan, J.F. Ge, R.X. Peng, and Z.Y. Ge, J. Mater. Chem. A 7, 22021 (2019).

    Article  CAS  Google Scholar 

  26. S.Y. Lee, J.S. Lee, J.S. Jang, K.H. Hong, D.K. Lee, S.M. Song, K.H. Kim, Y.J. Eo, J.H. Yun, J.H. Gwak, and C.H. Chung, Nano Energy 53, 675 (2018).

    Article  CAS  Google Scholar 

  27. S. Coskun, E.S. Ates, and H.E. Unalan, Nanotechnology 24, 125202 (2013).

    Article  CAS  Google Scholar 

  28. J.L. Elechiguerra, L. Larios-Lopez, C. Liu, D. Garcia-Gutierrez, A. Camacho-Bragado, and M.J. Yacaman, Chem. Mater. 17, 6042 (2005).

    Article  CAS  Google Scholar 

  29. H.H. Khaligh, and I.A. Goldthorpe, Nanoscale Res. Lett. 8, 235 (2013).

    Article  Google Scholar 

  30. H. Dong, Z.X. Wu, Y.Q. Jiang, W.H. Liu, X. Li, B. Jiao, W. Abbas, and X. Hou, ACS Appl. Mater. Interfaces 8, 31212 (2016).

    Article  CAS  Google Scholar 

  31. F. Duan, W.W. Li, G.R. Wang, C.X. Weng, H. Jin, H. Zhang, and Z. Zhang, Nano Res. 12, 1571 (2019).

    Article  CAS  Google Scholar 

  32. Q.J. Xu, T. Song, W. Cui, Y.Q. Liu, W.D. Xu, S.T. Lee, and B.Q. Sun, ACS Appl. Mater. Interfaces 7, 3272 (2015).

    Article  CAS  Google Scholar 

  33. A.R. Kim, Y.L. Won, K.H. Woo, C.H. Kim, and J.H. Moon, ACS Nano 7, 1081 (2013).

    Article  CAS  Google Scholar 

  34. Y.W. Hu, C. Liang, X.Y. Sun, J.F. Zheng, J.A. Duan, and X.Y. Zhuang, Nanomaterials 9, 673 (2019).

    Article  CAS  Google Scholar 

  35. Y.M. Kim, and J.-W. Kim, Appl. Surf. Sci. 363, 1 (2016).

    Article  CAS  Google Scholar 

  36. C.-H. Hong, S.K. Oh, T.K. Kim, Y.-J. Cha, J. Kwak, J.-H. Shin, B.-K. Ju, and W.-S. Cheong, Sci. Rep. 5, 17716 (2015).

    Article  CAS  Google Scholar 

  37. S.J. Choi, S.I. Han, D.J. Jung, H.J. Hwang, C.H. Lim, S.C. Bae, O.K. Park, C.M. Tschabrunn, M.C. Lee, S.Y. Bae, J.W. Yu, J.H. Ryu, S.-W. Lee, K.P. Park, P.M. Kang, W.B. Lee, R. Nezafat, T.H. Hyeon, and D.-H. Kim, Nat. Nanotech. 13, 1048 (2018).

    Article  CAS  Google Scholar 

  38. G.S. Liu, Y.W. Xu, Y.F. Kong, L. Wang, J. Wang, X. Xie, Y.H. Luo, and B.R. Yang, ACS Appl. Mater. Interfaces 10, 37699 (2018).

    Article  CAS  Google Scholar 

  39. G. Žerjav, and I. Milošev, Corros. Sci. 98, 180 (2015).

    Article  CAS  Google Scholar 

  40. W.J. Yang, T.Q. Li, H.H. Zhou, Z. Huang, C.P. Fu, L. Chen, M.B. Li, and Y.F. Kuang, Electrochim. Acta 220, 245 (2016).

    Article  CAS  Google Scholar 

  41. M. Finsgar, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 190, 290 (2018).

    Article  CAS  Google Scholar 

  42. J. Lee, P. Lee, H.M. Lee, D.J. Lee, S.S. Lee, and S.H. Ko, Nanoscale 4, 6408 (2012).

    Article  CAS  Google Scholar 

  43. H. Oh, J. Lee, and M. Lee, Appl. Surf. Sci. 427, 65 (2018).

    Article  CAS  Google Scholar 

  44. Y. Qin, S.-M. Lee, A. Pan, U. Gösele, and M. Knez, Nano Lett. 8, 114 (2008).

    Article  CAS  Google Scholar 

  45. S. Xu, P.F. Li, and Y. Lu, Nano Res. 11, 625 (2018).

    Article  CAS  Google Scholar 

  46. X.F. Pan, H.L. Gao, Y. Su, Y.D. Wu, X.Y. Wang, J.Z. Xue, T. He, Y. Lu, J.W. Liu, and S.H. Yu, Nano Res. 11, 410 (2018).

    Article  CAS  Google Scholar 

  47. I. Fratoddi, R. Matassa, L. Fontana, I. Venditti, G. Familiari, C. Battocchio, E. Magnano, S. Nappini, G. Leahu, A. Belardini, R.L. Voti, and C. Sibilia, The J. Phys. Chem. C 121, 18110 (2017).

    Article  CAS  Google Scholar 

  48. L. Zhang, C. Wang, and Y. Zhang, Appl. Surf. Sci. 258, 5312 (2012).

    Article  CAS  Google Scholar 

  49. S. Akel, R. Dillert, N.O. Balayeva, R. Boughaled, J. Koch, M. El. Azzouzi, and D.W. Bahnemann, Catalysts 8, 647 (2018).

    Article  CAS  Google Scholar 

  50. B.A. Zaccheo, and R.M. Crooks, Langmuir 27, 11591 (2011).

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the fundamental research program (PNK7400) of the Korea Institute of Materials Science (KIMS). This research was also supported by the Technology Development Program (S2830309) funded by the Ministry of SMEs and Startups (MSS, Korea), “Nano Product Upgrading Program using Electron Beam” through the Gyeongnam-do and Gimhae.

Author information

Authors and Affiliations

Authors

Contributions

This experimental framework was designed and directed by C.S.K. J.M. was responsible for the progress of this experiment and analysis of the data and details with C.S.K., S.J., and J.K. J.K. contributed to contact the SEM and XPS. Lee assisted in the design and operation of this experiment. Writing—original draft preparation, J.M. writing—review and editing, J.M, J.K., S.J., and C.S.K.

Corresponding authors

Correspondence to Sungjin Jo or Chang Su Kim.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Kim, JH., Lee, G.H. et al. Improving the Thermal Stability and Oxidation Resistance of Silver Nanowire Films via 2-Mercaptobenzimidazole Modification. Journal of Elec Materi 50, 4908–4914 (2021). https://doi.org/10.1007/s11664-021-09018-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09018-z

Keywords

Navigation