Skip to main content
Log in

First-Principles Investigation of Structural, Elastic, Electronic, and Optical Properties of Cd1−xyZnxHgyS Quaternary Alloys

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

First-principles calculations have been carried out to explore the zinc and mercury composition-dependent structural, elastic, electronic, and optical properties of zinc-blend specimens under the Cd1−x−yZnxHgyS triangular quaternary system. Each quaternary alloy shows thermodynamic stability. Computed elastic stiffness constants confirm the mechanical stability, ductility, elastic anisotropy, compressibility, plasticity, and mixed type of bonding in each specimen. Calculations with modified Becke–Johnson (mBJ)-generalized gradient approximation (GGA) and GGA+U schemes show that each ternary or quaternary alloy is a direct band gap (ΓΓ) semiconductor. Carrier transportation in each specimen is significantly dominated by electrons due to their much lower effective mass compared to holes. Electronic transitions from the occupied S-3p state of the valence band to the unoccupied Zn-5s, Cd-6s, and Hg-7s states of the conduction band are exclusively or collectively responsible for the occurrence of intense peaks in the imaginary part of the dielectric function, ε2(ω), spectra of the considered specimens. The calculated oscillator strengths of quaternary alloys show the presence of a sufficient number of electrons in the unoccupied states of the conduction band beyond 25.0 eV of incident energy during optical excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors (West Sussex: Wiley, 2009).

    Book  Google Scholar 

  2. V. Tomashyk, Quaternary Alloys Based on II–VI Semiconductors (New York: CRC Press, 2015).

    Book  Google Scholar 

  3. S. Adachi, III-V ternary and quaternary compoundsands, Springer Handbook of Electronic and Photonic Materials. ed. S. Kasap, and P. Capper (Berlin: Springer, 2017), p. 725.

    Google Scholar 

  4. J. Wang, and M. Isshiki, Wide-Band-gap II–VI Semiconductors: Growth and properties, Springer Handbook of Electronic and Photonic Materials (Berlin: Springer, 2006), p. 325.

    Book  Google Scholar 

  5. R.J. Nelmes, and M.I. McMahon, Structural Transitions in the Group IV, III-V, and II-VI Semiconductors under Pressure, High Pressure in Semiconductor Physics I, Vol. 54. ed. T. Suski, and W. Paul (New York: Academic, 1998), p. 145.

    Google Scholar 

  6. G. Arora, and B.L. Ahuja, Radiat. Phys. Chem. 77, 9 (2008).

    Article  CAS  Google Scholar 

  7. K. Dybko, W. Szuszkiewicz, E. Dynowska, W. Paszkowicz, and B. Witkowska, Phys. B 256, 629 (1998).

    Article  Google Scholar 

  8. F. Shieh, A.E. Saunders, and B.A. Korgel, J. Phys. Chem. B 109, 8538 (2005).

    Article  CAS  Google Scholar 

  9. Z.A. Peng, and X.G. Peng, J. Am. Chem. Soc. 123, 183 (2001).

    Article  CAS  Google Scholar 

  10. L.F. Xi, K.H. Chua, Y.Y. Zhao, J. Zhang, Q.H. Xiong, and Y.M. Lam, RSC Adv. 2, 5243 (2012).

    Article  CAS  Google Scholar 

  11. X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, and D. Golberg, Prog. Mater. Sci. 56, 175 (2011).

    Article  CAS  Google Scholar 

  12. D. Schooss, A. Mews, A. Eychmuller, and H. Weller, Phys. Rev. B 49, 17072 (1994).

    Article  CAS  Google Scholar 

  13. M. Kuno, K.A. Higginson, J.E. Bonevich, S.B. Qadri, M. Yousuf, and H. Mattoussi, Proc. SPIE 4808, 146 (2002).

    Article  CAS  Google Scholar 

  14. A. Mews, A.V. Kadavanich, U. Banin, and A.P. Alivisatos, Phys. Rev. B 53, 242 (1996).

    Article  Google Scholar 

  15. K. Hoang, C. Latouche, and S. Jobic, Comput. Mater. Sci. 163, 63 (2019).

    Article  CAS  Google Scholar 

  16. O. Medelung ed., Landolt Bornstein: Numerical Data and Functional Relationship in Science and Technology 17b. (Berlin: Springer, 1982).

    Google Scholar 

  17. NKh. Abrikosov, V.B. Bankina, L.V. Poretskaya, L.E. Shelimova, and E.V. Skudnova, Semiconducting II-VI, IVVI and V- VI Compounds (New York: Plenum, 1969).

    Google Scholar 

  18. O. Medelung ed., Landolt Bornstein: Semiconductors Basic Data in Science and Technology. (Berlin: Springer, 1996).

    Google Scholar 

  19. W.H. Strehlow, and E.L. Cook, J. Phys. Chem. Ref. Data 2, 163 (1973).

    Article  CAS  Google Scholar 

  20. S. Ves, U. Schwarz, N.E. Christensen, K. Syassen, and M. Cardona, Phys. Rev. B 42, 9113 (1990).

    Article  CAS  Google Scholar 

  21. P.J. Ford, A.J. Miller, G.A. Saunders, Y.K. Yogurtçu, J.K. Furdyna, and M. Jaczynski, J. Phys. C Solid State Phys. 15, 657 (1982).

    Article  CAS  Google Scholar 

  22. D. Berlincourt, H. Jafee, and L.R. Shlozawa, Phys. Rev. 129, 1009 (1963).

    Article  CAS  Google Scholar 

  23. J. D. Bass, Mineral Physics and Crystallography: A Handbook of Physical Constants, ed. by T. J. Ahrens (American Geophysical Union, 1995), p 45.

  24. K. Kumazaki, Phys. Stat. Sol. A 33, 615 (1976).

    Article  CAS  Google Scholar 

  25. A. Lehoczky, D.A. Nelson, and C.R. Whitsett, Phys. Rev. 188, 1069 (1969).

    Article  CAS  Google Scholar 

  26. J.C. Phillips, Rev. Mod. Phys. 42, 317 (1970).

    Article  CAS  Google Scholar 

  27. T.M. Bieniewski, and S.J. Czyzak, J. Opt. Soc. Am. 53, 496 (1963).

    Article  CAS  Google Scholar 

  28. A. Manabe, A. Mitsuishi, and H. Yoshinaga, Jpn. J. Appl. Phys. 6, 593 (1967).

    Article  CAS  Google Scholar 

  29. S.J. Czyzak, W.M. Barker, R.C. Crane, and J.B. Howe, J. Opt. Soc. Am. 47, 240 (1957).

    Article  CAS  Google Scholar 

  30. X.J. Chen, A. Mintz, J.S. Hu, X.L. Hua, J. Zinck, and W.A. Goddard-III, J. Vac. Sci. Technol. B 13, 1715 (1995).

    Article  CAS  Google Scholar 

  31. J. Heyd, J.E. Peralta, and G.E. Scuseria, J. Chem. Phys. 123, 174101 (2005).

    Article  CAS  Google Scholar 

  32. E. Deligoz, K. Colakoglu, and Y. Ciftci, Phys. B 373, 124 (2006).

    Article  CAS  Google Scholar 

  33. S. Ouendadji, S. Ghemid, H. Meradji, and H.F. El Haj, Comp. Mater. Sci. 50, 1460 (2011).

    Article  CAS  Google Scholar 

  34. L. Guo, S. Zhang, W. Feng, G. Hu, and W. Li, J. Alloys Comp. 579, 583 (2013).

    Article  CAS  Google Scholar 

  35. S. Sharma, A.S. Verma, B.K. Sarkar, R. Bhandari, and V.K. Jindal, AIP Conf. Proc. 1393, 229 (2011).

    Article  CAS  Google Scholar 

  36. K. Wright, and J.D. Gale, Phys. Rev. B 70, 035211 (2004).

    Article  CAS  Google Scholar 

  37. M. Kitamura, S. Muramutsu, and W.A. Harrison, Phys. Rev. B 46, 1351 (1992).

    Article  CAS  Google Scholar 

  38. N. Ullah, G. Murtaza, R. Khenata, K.M. Wong, and Z.A. Alahmed, Phase Transit. 87, 571 (2014).

    Article  CAS  Google Scholar 

  39. B. Al Shafaay, H.F. El Haj, and M. Korek, Comp. Mater. Sci. 83, 107 (2014).

    Article  CAS  Google Scholar 

  40. I. Duz, I. Erdem, S. Ozdemir Kart, and V. Kuzucu, Arch. Mater. Sci. Eng. 79, 5 (2016).

    Article  Google Scholar 

  41. Y. Xiao-Cui, Y. Jie, Z. En-Jie, and G. Chun-Xiao, Phys. Stat. Sol. C 8, 1703 (2011).

    Google Scholar 

  42. R. Khenata, A. Bouhemadou, M. Sahnoun, A.H. Reshak, H. Baltache, and M. Rabah, Comp. Mater. Sci. 38, 29 (2006).

    Article  CAS  Google Scholar 

  43. R.A. Casali, and N.E. Christensen, Sol. Stat. Commun. 108, 793 (1998).

    Article  CAS  Google Scholar 

  44. M. Bilal, M. Shafiq, I. Ahmad, and I. Khan, J. Semicond. 35, 0720011 (2014).

    Article  CAS  Google Scholar 

  45. S. Kamran, K. Chen, and L. Chen, Phys. Rev. B 77, 094109 (2008).

    Article  CAS  Google Scholar 

  46. A. Fleszar, and W. Hanke, Phys. Rev. B 71, 045207 (2005).

    Article  CAS  Google Scholar 

  47. O. Zakharov, A. Rubio, X. Blase, M.L. Cohen, and S.G. Loui, Phys. Rev. B 50, 10780 (1994).

    Article  CAS  Google Scholar 

  48. F. Boutaiba, A. Zaoui, and M. Ferhat, Superlatt. Microstruct. 46, 823 (2009).

    Article  CAS  Google Scholar 

  49. T.D. Dzhafarov, F. Ongul, and I. Karabay, J. Phys. D Appl. Phys. 39, 3221 (2006).

    Article  CAS  Google Scholar 

  50. D. Patidar, N.S. Saxena, and T.P. Sharma, J. Mod. Opt. 55, 79 (2008).

    Article  CAS  Google Scholar 

  51. G. Jia, N.A. Wang, L. Gong, and X. Fei, Chalcogen. Lett. 6, 463 (2009).

    CAS  Google Scholar 

  52. A.J. Peter, and C.W. Lee, Chin. Phys. B 21, 087302 (2012).

    Article  CAS  Google Scholar 

  53. R. Shrivastava, S.C. Shrivastava, R.S. Singh, and A.K. Singh, Mater. Res. Exp. 2, 036401 (2015).

    Article  CAS  Google Scholar 

  54. T.Y. Lui, J.A. Zapien, H. Tang, D.D.D. Ma, Y.K. Liu, C.S. Lee, S.T. Lee, S.L. Shi, and S.J. Xu, Nanotechnology 17, 5935 (2006).

    Article  CAS  Google Scholar 

  55. W. Huang, Z. Yuan, Y. Ren, Z. Ke, Z. Cai, and C. Yang, Phys. E. 108, 60 (2019).

    Article  CAS  Google Scholar 

  56. Y. Wang, K.S. Leck, V.D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H.V. Demir, and H. Sun, Adv. Mater. (2018). https://doi.org/10.1002/adma.201403237.

    Article  Google Scholar 

  57. K. Benchikh, H. Abid, and M. Benchehima, Mater. Sci. Pol. (2017). https://doi.org/10.1515/msp-2017-0005.

    Article  Google Scholar 

  58. N.A. Noor, N. Ikram, S. Ali, S. Nazir, S.M. Alay-e-Abbas, and A. Shaukat, J. Alloys Comp. 507, 356 (2010).

    Article  CAS  Google Scholar 

  59. S. Al-Rajoub, and B. Hamad, Mod. Phys. Lett. B 30, 1650173 (2016).

    Article  CAS  Google Scholar 

  60. M. Debbarma, U. Sarkar, B. Debnath, S. Chanda, D. Ghosh, R. Bhattacharjee, and S. Chattopadhyaya, Curr. Appl. Phys. 18, 698 (2018).

    Article  Google Scholar 

  61. G. Murtaza, N. Ullah, A. Rauf, R. Khenata, S. Bin Omran, M. Sajjad, and A. Waheed, Mater. Sci. Semicond. Process. 30, 462 (2015).

    Article  CAS  Google Scholar 

  62. M. Debbarma, U. Sarkar, B. Debnath, D. Ghosh, S. Chanda, R. Bhattacharjee, and S. Chattopadhyaya, J. Alloys Comp. 748, 446 (2018).

    Article  CAS  Google Scholar 

  63. S. Wang, C. Ren, H. Tian, J. Yu, and M. Sun, Phys. Chem. Chem. Phys. 20, 13394 (2018).

    Article  CAS  Google Scholar 

  64. S. Wang, H. Tian, C. Ren, J. Yu, and M. Sun, Sci. Rep. 8, 12009 (2018).

    Article  CAS  Google Scholar 

  65. Y. Luo, S. Wang, H. Shu, J.-P. Chou, K. Ren, J. Yu, and M. Sun, Semicond. Sci. Technol. 35, 125008 (2020).

    Article  CAS  Google Scholar 

  66. K. Hoang, Phys. Status Sol. RRL 9, 722 (2015).

    Article  CAS  Google Scholar 

  67. L.-H. Ye, K. Hoang, A.J. Freeman, S.D. Mahanti, J. He, T.M. Tritt, and M.G. Kanatzidis, Phys. Rev. B 77, 245203 (2008).

    Article  CAS  Google Scholar 

  68. P. Blaha, K. Schwarz, G. H. Madsen, D. Kbasnicka, and J. Luitz, in FP-LAPW+lo Program for Calculating Crystal Properties, ed. by K. Schwarz (Austria Techn. WIEN2K, 2001).

  69. P. Hohenberg, and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  Google Scholar 

  70. W. Kohn, and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  71. O.K. Andersen, Phys. Rev. B 42, 3063 (1975).

    Google Scholar 

  72. M. Jamal, S.J. Asadabadi, I. Ahmed, and H.A.R. Aliabad, Comp. Mater. Sci. 95, 592 (2014).

    Article  CAS  Google Scholar 

  73. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  74. F. Tran, and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    Article  CAS  Google Scholar 

  75. V.I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44, 943 (1991).

    Article  CAS  Google Scholar 

  76. V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyyk, and G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993).

    Article  CAS  Google Scholar 

  77. J. Hubbard, Proc. R. Soc. Lond. A 276, 238 (1963).

    Article  Google Scholar 

  78. D.D. Koelling, and B.N. Harmon, J. Phys. C 10, 3107 (1977).

    Article  CAS  Google Scholar 

  79. H. Gollisch, and L. Fritsche, Phys. Stat. Sol. B 86, 145 (1978).

    Article  CAS  Google Scholar 

  80. T. Takeda, Z. Physik B 32, 43 (1978).

    Article  CAS  Google Scholar 

  81. A. Kokalj, Comp. Mat. Sci. 28, 155 (2003).

    Article  CAS  Google Scholar 

  82. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).

    Article  CAS  Google Scholar 

  83. L. Vegard, Z. Phys. 5, 17 (1921).

    Article  CAS  Google Scholar 

  84. M.F. Thorpe, S.D. Mahanti, and W. Jin, Vegard’s law in solids, Disorder in Condensed Matter Physics. ed. J.A. Blackman, and J. Taguena (Oxford: Clarendon, 1991), p. 22.

    Google Scholar 

  85. M. Born, and K. Huang, Dynamics Theory of Crystal Lattices (Oxford: Oxford University Press, 1954).

    Google Scholar 

  86. W. Voigt, Ann. Phys. 38, 573 (1889).

    Article  Google Scholar 

  87. A. Reuss, and Z. Angew, Math. Phys. 9, 49 (1929).

    CAS  Google Scholar 

  88. R. Hill, Proc. Phys. Soc. Lond. A 65, 349 (1952).

    Article  Google Scholar 

  89. D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992).

    Article  CAS  Google Scholar 

  90. S.F. Pugh, Philos. Mag. 45, 823 (1954).

    Article  CAS  Google Scholar 

  91. I.N. Frantsevich, F.F. Voronov, and S.A. Bokuta, Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (Kiev: Naukova Dumka, 1983), p. 60.

    Google Scholar 

  92. L. Kleinman, Phys. Rev. 128, 2614 (1962).

    Article  CAS  Google Scholar 

  93. R.Y. Potter, J. Phys. Chem. Solids 3, 223 (1957).

    Article  CAS  Google Scholar 

  94. P. Ravindran, L. Fast, P.A. Korzhavyi, and B. Johansson, J. Appl. Phys. 84, 4891 (1998).

    Article  CAS  Google Scholar 

  95. S. Li, S. Li, and Ju. Xin, J. Alloys Comp. 695, 2916 (2017).

    Article  CAS  Google Scholar 

  96. W. Huang, and L. Yang, Can J. Phys. 93, 1 (2015).

    Article  CAS  Google Scholar 

  97. B. Liu, J.Y. Wang, F.Z. Li, and Y.C. Zhou, Acta Mater. 58, 4369 (2010).

    Article  CAS  Google Scholar 

  98. M.E. Fine, L.D. Brown, and H.L. Marcus, Scr. Metall. 18, 951 (1984).

    Article  CAS  Google Scholar 

  99. M. Fox, Optical Properties of Solids (Oxford: Oxford University Press, 2001).

    Google Scholar 

  100. N. Ullah, G. Murtaza, R. Khenata, K.M. Wong, and Z.A. Alahmed, Phase Trans. 87, 571 (2014).

    Article  CAS  Google Scholar 

  101. N.W. Ashcroft, and N.D. Mermin, Solid State Physics (New York: Harcourt Brace College, 1976).

    Google Scholar 

  102. G. Murtaza, I. Ahmad, B. Amin, A. Afaq, F. Ghafoor, and A. Benamrani, Phys. B 406, 2632 (2011).

    Article  CAS  Google Scholar 

  103. F. Ahmadian, and A. Salary, J. Korean Phys. Soc. 68, 227 (2016).

    Article  CAS  Google Scholar 

  104. M. Dadsetani, and A. Pourghazi, Phys. Rev. B 73, 195102 (2006).

    Article  CAS  Google Scholar 

  105. D.R. Penn, Phys. Rev. 128, 2093 (1962).

    Article  CAS  Google Scholar 

  106. C. Sifi, H. Meradrji, M. Silmani, S. Labidi, S. Ghemid, E.B. Hanneche, and F. El Haj Hassan, J. Phys. Cond. Mat. 21, 195401 (2009).

    Article  CAS  Google Scholar 

  107. M. Dressel, and G. Gruner, Electrodynamics of Solids (Cambridge: Cambridge University Press, 2001).

    Google Scholar 

Download references

Acknowledgments

Ms. Sayantika Chanda is thankful to the Department of Science & Technology (DST), Government of India for providing DST-INSPIRE-JRF [Ref. No DST/INSPIRE/03/2017/002068]. The authors are also grateful to the University Grants Commission (UGC), Government of India, for providing financial assistance through the UGC-SAP program 2016 [Ref. No F.530/23/DRS-I/2018 (SAP-I)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya Chattopadhyaya.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanda, S., Debbarma, M., Ghosh, D. et al. First-Principles Investigation of Structural, Elastic, Electronic, and Optical Properties of Cd1−xyZnxHgyS Quaternary Alloys. Journal of Elec Materi 50, 4705–4726 (2021). https://doi.org/10.1007/s11664-021-08986-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08986-6

Keywords

Navigation