Skip to main content
Log in

Effect of In-Doping on Mechanical Properties of Cu6Sn5-Based Intermetallic Compounds: A First-Principles Study

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cu6(Sn, In)5 phase intermetallic compounds (IMCs) were generated by In doping in Sn-Ag-Cu(SAC) solders. First, the optimum site of the In atom replacing the Sn atom was determined. Subsequently, the elastic constants of the IMCs were calculated based on the determined structure. All calculations were performed using first-principles calculations. The results show that Cu24Sn19In1 is a new IMC, and its structural stability is better than that of Cu6Sn5. Moreover, the anisotropy of Cu24Sn19In1 is stronger than that of Cu6Sn5. Based on first-principles calculations and VRH methods, the bulk modulus, shear modulus, Young’s modulus, and Poisson's ratio of polycrystalline Cu6Sn5 are 78.31 GPa, 39.00 GPa, 100.35 GPa, and 0.2864 GPa, respectively, and 88.08 GPa, 41.42 GPa, 107.43 GPa, and 0.2967 GPa of Cu24Sn19In1, respectively. All elastic moduli of the latter are larger than those of the former. The formation of a Cu24Sn19In1 IMC can improve the mechanical properties of the IMC layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. M. Zhao, L. Zhang, Z.Q. Liu, M.Y. Xiong, and L. Sun, Sci. Technol. Adv. Mater. 20, 421 (2019).

    Article  CAS  Google Scholar 

  2. M.Y. Xiong, and L. Zhang, J. Mater. Sci. 54, 1741 (2018).

    Article  Google Scholar 

  3. A.K. Gain, Y.C. Chan, and W.K.C. Yung, Microelectron. Reliab. 51, 975 (2011).

    Article  CAS  Google Scholar 

  4. A.S.M.A. Haseeb, M.M. Arafat, and M.R. Johan, Mater. Charact. 64, 27 (2012).

    Article  CAS  Google Scholar 

  5. J.F. Li, P.A. Agyakwa, and C.M. Johnson, J. Alloy. Compd. 545, 70 (2012).

    Article  CAS  Google Scholar 

  6. N. Dariavach, P. Callahan, J. Liang, and R. Fournelle, J. Electron. Mater. 35, 1581 (2006).

    Article  CAS  Google Scholar 

  7. F.J. Cheng, F. Gao, H. Nishikawa, and T. Takemoto, J. Alloy. Compd. 472, 530 (2009).

    Article  CAS  Google Scholar 

  8. V.M.F. Marques, C. Johnston, and P.S. Grant, Acta Mater. 61, 2460 (2013).

    Article  CAS  Google Scholar 

  9. W.B. Zhu, W.W. Zhang, W. Zhou, and P. Wu, J. Alloy. Compd. 789, 805 (2019).

    Article  CAS  Google Scholar 

  10. J. Wu, S.B. Xue, J.W. Wang, J.X. Wang, and D. Yangbao, J. Mater. Sci. Mater. Electron. 29, 19663 (2018).

    Article  Google Scholar 

  11. V. Jayaram, S. McCann, B. Singh, R. Pulugurtha, V. Smet, R. Tummala, H. Matsuura, and Y. Takagi, in: 67th Electronic Components and Technology Conference (ECTC) (2017), pp. 1405–1412.

  12. S. Tian, S.P. Li, J. Zhou, and F. Xue, J. Alloy. Compd. 742, 835 (2018).

    Article  CAS  Google Scholar 

  13. M. Qu, T.Z. Cao, Y. Cui, F.B. Liu, Z.W. Jiao, and C. Li, in: IOP Conference Series: Materials Science and Engineering, (2018).

  14. K. Kanlayasiri, M. Mongkolwongrojn, and T. Ariga, J. Alloy. Compd. 485, 225 (2009).

    Article  CAS  Google Scholar 

  15. J.X. Wang, M. Yin, Z.M. Lai, and X. Li, Trans. China Weld. Inst. 32, 69 (2011).

    Google Scholar 

  16. S. Chantaramanee, P. Sungkhaphaitoon, and T. Plookphol, Solid State Phenom. 266, 196 (2017).

    Article  Google Scholar 

  17. K.S. Kim, S.H. Huh, and K. Suganuma, J. Alloy. Compd. 352, 226 (2003).

    Article  CAS  Google Scholar 

  18. A. Sharif, and Y.C. Chan, J. Alloy. Compd. 390, 67 (2005).

    Article  CAS  Google Scholar 

  19. P. Šebo, Z. Moser, P. Švec, D. Janičkovič, E. Dobročka, W. Gasior, and J. Pstruś, J. Alloy. Compd. 480, 409 (2009).

    Article  Google Scholar 

  20. N.T.S. Lee, V.B.C. Tan, and K.M. Lim, Appl. Phys. Lett. 88, 031913 (2006).

    Article  Google Scholar 

  21. W.W. Zhang, Y. Ma, W. Zhou, and P. Wu, J. Electron. Mater. 48, 4533 (2019).

    Article  CAS  Google Scholar 

  22. X.Y. Bi, X.W. Hu, X.X. Jiang, and Q.L. Li, Vacuum 164, 7 (2019).

    Article  CAS  Google Scholar 

  23. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, J. Phys.-Condes. Matter. 14, 2717 (2002).

    Article  CAS  Google Scholar 

  24. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 4 (1996).

    Article  Google Scholar 

  25. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, Apl. Mater. 1, 011002 (2013).

    Article  Google Scholar 

  26. R. Hill, Proc. Phys. Soc. A. 65, 349 (1952).

    Article  Google Scholar 

  27. G. Ghosh, and M. Asta, J. Mater. Res 20, 3102 (2005).

    Article  CAS  Google Scholar 

  28. Z. Chen, C. Liu, B. An, Y. Wu, and L. Liu, J. Mater. Sci. Mater. Electron. 28, 17461 (2017).

    Article  CAS  Google Scholar 

  29. S.F. Pugh, Philos. Mag. 45, 823 (1954).

    Article  CAS  Google Scholar 

  30. M.T. Zarmai, and C.F. Oduoza, Microelectron. Reliab. 116, 114008 (2021).

    Article  CAS  Google Scholar 

  31. A.A. El-Daly, and A.E. Hammad, J. Alloy. Compd. 509, 8554 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the generous support from the National Natural Science Foundation of China (NSFC 61474032) and National Defense Basic Scientific Research Program of China under Grant JSZL2018204B003. The authors also would like to thank Editage (www.editage.cn) for English language editing.

Funding

This study was sponsored by the National Natural Science Foundation of China (NSFC 61474032) and the National Defense Basic Scientific Research Program of China under Grant (JSZL2018204B003).

Author information

Authors and Affiliations

Authors

Contributions

WH performed the simulation, analyzed the data, and wrote the draft; KP guided the simulation and provided the funding; JZ edited the paper; YG reviewed the paper and provided the funding.

Corresponding author

Correspondence to Kailin Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Pan, K., Zhang, J. et al. Effect of In-Doping on Mechanical Properties of Cu6Sn5-Based Intermetallic Compounds: A First-Principles Study. J. Electron. Mater. 50, 4164–4171 (2021). https://doi.org/10.1007/s11664-021-08929-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08929-1

Keywords

Navigation