Skip to main content
Log in

Charge Plasma-Based Phosphorene Tunnel FET Using a Hybrid Computational Method

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, a charge plasma-based phosphorene double-gate tunnel FET (CP-BPDGTFET) is investigated. A hybrid simulation technique involving both atomistic and technology computer-aided design (TCAD) has been used to simulate the device characteristics. First, the density functional theory has been used to simulate phosphorene electrical characteristics (monolayer to few-layer, including armchair and zigzag directions). The parameters such as band gap and effective mass obtained using an atomistic simulator tool are exported into Sentaurus TCAD to simulate the device characteristics. The drain current characteristics are calibrated for conventional double gate phosphorene tunnel FET with non-equilibrium Green's function results. The DC characteristics of the proposed device are studied. The device performance is analysed by varying the device parameters such as gate length (Lg), spacer length (Ls), and gate workfunction (ϕm). Based on the study, an optimised device is designed, and its characteristics are obtained. The optimised device offers an on-current value of 405 µA/µm, SS = 79 mV/dec, Ion/Ioff = 1.13 × 106 for 30 nm gate length. It establishes that CP-BPDGTFET is a suitable candidate for energy-efficient circuit applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

source to channel (arrow mark) are shown. (b) Shows carrier density for off-state (dotted line) and on state (solid line) (blue-electron/red-hole). It is found that the electron density in the channel dominates in both states. Energy bands and electron density are taken at 0.1 nm from the surface (Color figure online).

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F. Schwierz, J. Pezoldt, and R. Granzner, Nanoscale 7, 8261 (2015).

    Article  CAS  Google Scholar 

  2. S. Das, M. Demarteau, and A. Roelofs, ACS Nano 8, 11730 (2014).

    Article  CAS  Google Scholar 

  3. H. Qu, S. Guo, W. Zhou, and S. Zhang, IEEE Electron Device Lett. 42, 66 (2021).

    Article  CAS  Google Scholar 

  4. X.B. Li, P. Guo, T.F. Cao, H. Liu, W.M. Lau, and L.M. Liu, Sci. Rep. 5, 1 (2015).

    Google Scholar 

  5. A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. Van Der Zant, 2D Mater. 1 (2014).

  6. X. Ling, H. Wang, S. Huang, F. Xia, and M.S. Dresselhaus, Proc. Natl. Acad. Sci. U. S. A. 112, 4523 (2015).

    Article  CAS  Google Scholar 

  7. A. Goswami, and M.B. Gawande, Front. Chem. Sci. Eng. 13, 296 (2019).

    Article  Google Scholar 

  8. F. Xia, H. Wang, J.C.M. Hwang, A.H.C. Neto, and L. Yang, Nat. Rev. Phys. 1, 306 (2019).

    Article  CAS  Google Scholar 

  9. A. Carvalho, M. Wang, X. Zhu, A.S. Rodin, H. Su, and A.H. Castro-Neto, Nat. Rev. Mater. 1, 16031 (2016).

    Article  Google Scholar 

  10. X. Feng, L. Wang, X. Huang, L. Chen, and K.-W. Ang, IEEE Trans. Electron Devices 1 (2018).

  11. H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M.L. Chin, M. Dubey, and S.J. Han, Nano Lett. 14, 6424 (2014).

    Article  CAS  Google Scholar 

  12. M. Navid, A. Aadit, S. N. Juthi, and S. G. Kirtania, 7 (2017).

  13. F.W. Chen, H. Ilatikhameneh, T.A. Ameen, G. Klimeck, and R. Rahman, IEEE Electron Device Lett. 38, 130 (2017).

    Article  CAS  Google Scholar 

  14. S. Kim, G. Myeong, W. Shin, H. Lim, B. Kim, T. Jin, S. Chang, K. Watanabe, T. Taniguchi, and S. Cho, Nat. Nanotechnol. 15, 203 (2020).

    Article  CAS  Google Scholar 

  15. A. Szabo, S.J. Koester, and M. Luisier, IEEE Electron Device Lett. 36, 514 (2015).

    Article  CAS  Google Scholar 

  16. P.K. Dubey, and B.K. Kaushik, IEEE Trans. Electron Devices 66, 2837 (2019).

    Article  Google Scholar 

  17. R.J.E. Hueting, B. Rajasekharan, C. Salm, and J. Schmitz, IEEE Electron Device Lett. 29, 1367 (2008).

    Article  Google Scholar 

  18. B. Rajasekharan, R.J.E. Hueting, C. Salm, T. Van Hemert, R.A.M. Wolters, and J. Schmitz, IEEE Electron Device Lett. 31, 528 (2010).

    Article  CAS  Google Scholar 

  19. A. Pon, A. Bhattacharyya, B. Padmanaban, and R. Ramesh, J. Comput. Electron. (2019).

  20. W. Wan, H. Lou, Y. Xiao, and X. Lin, IEEE Trans. Electron Devices 65, 1873 (2018).

    Article  CAS  Google Scholar 

  21. D. Soni, D. Sharma, S. Yadav, M. Aslam, and N. Sharma, Superlattices Microstruct. 113, 97 (2018).

    Article  CAS  Google Scholar 

  22. D. Singh, S. Pandey, K. Nigam, D. Sharma, D.S. Yadav, and P. Kondekar, IEEE Trans. Electron Devices 64, 271 (2017).

    Article  CAS  Google Scholar 

  23. M.J. Kumar, and S. Janardhanan, IEEE Trans. Electron Devices 60, 3285 (2013).

    Article  CAS  Google Scholar 

  24. Y. Pan, Y. Dan, Y. Wang, M. Ye, H. Zhang, R. Quhe, X. Zhang, J. Li, W. Guo, L. Yang, J. Lu, and A.C.S. Appl, Mater. Interfaces 9, 12694 (2017).

    Article  CAS  Google Scholar 

  25. A. Blom, U. M. Pozzoni, T. Markussen, and K. Stokbro, Int. Conf. Simul. Semicond. Process. Devices, SISPAD 2015-Octob, 52 (2015).

  26. Á. Szabó, C. Klinkert, D. Campi, C. Stieger, N. Marzari, and M. Luisier, IEEE Trans. Electron Devices 65, 4180 (2018).

    Article  Google Scholar 

  27. C. Nanmeni Bondja, Z. Geng, R. Granzner, J. Pezoldt, and F. Schwierz, Electronics 5, 3 (2016).

    Article  Google Scholar 

  28. C. Maneux, S. Fregonese, T. Zimmer, S. Retailleau, H.N. Nguyen, D. Querlioz, A. Bournel, P. Dollfus, F. Triozon, Y.M. Niquet, and S. Roche, Solid State Electron. 89, 26 (2013).

    Article  CAS  Google Scholar 

  29. S. Carapezzi, S. Eberle, S. Reggiani, E. Gnani, C. Roman, C. Hierold, and A. Gnudi, Solid-State Device Res. 1, 3 (2018).

    Google Scholar 

  30. Y. Du, H. Liu, Y. Deng, and P.D. Ye, ACS Nano 8, 10035 (2014).

    Article  CAS  Google Scholar 

  31. S. Luo, K.T. Lam, B. Wang, C.H. Hsu, W. Huang, L.Z. Yao, A. Bansil, H. Lin, and G. Liang, IEEE Trans. Electron Devices 64, 579 (2017).

    Article  CAS  Google Scholar 

  32. G. Mirabelli, F. Gity, S. Monaghan, P. K. Hurley, and R. Duffy, Eur. Solid-State Device Res. Conf. 288 (2017).

  33. G. Shine, and K.C. Saraswat, IEEE Trans. Electron Devices 64, 3768 (2017).

    Article  CAS  Google Scholar 

  34. A. Pon, K.S.V.P. Tulasi, R. Ramesh, and A.E.U. Int, J. Electron. Commun. 102, 1 (2019).

    Article  Google Scholar 

  35. A. Pon, S. Carmel, A. Bhattacharyya, and R. Rathinam, in 2019 IEEE International Conference on Electron Devices Solid-State Circuits, EDSSC 2019 (Institute of Electrical and Electronics Engineers (IEEE), 2019), pp. 1–3.

  36. R. Rathinam, A. Pon, S. Carmel, A. Bhattacharyya, and I.E.T. Circuits, Devices Syst. 14, 1167 (2020).

    Article  Google Scholar 

  37. J. Tao, J. Chem. Phys. 116, 2335 (2002).

    Article  CAS  Google Scholar 

  38. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P.D. Ye, ACS Nano 8, 4033 (2014).

    Article  CAS  Google Scholar 

  39. J. Qiao, X. Kong, Z.X. Hu, F. Yang, and W. Ji, Nat. Commun. 5, 1 (2014).

    Google Scholar 

  40. A. Ojha, and N.R. Mohapatra, Solid. State. Electron. 160, 107625 (2019).

    Article  CAS  Google Scholar 

  41. N. Ma, and D. Jena, Device Res. Conf. Conf. Dig. DRC 132102, 103 (2013).

    Google Scholar 

  42. J. Hur, W.J. Jeong, M. Shin, and Y.K. Choi, IEEE Trans. Electron Devices 64, 5223 (2017).

    Article  CAS  Google Scholar 

  43. J. Madan, R. Pandey, R. Sharma, and R. Chaujar, Appl. Phys. A 125, 600 (2019).

    Article  Google Scholar 

  44. T.A. Ameen, H. Ilatikhameneh, G. Klimeck, and R. Rahman, Sci. Rep. 6, 1 (2016).

    Article  Google Scholar 

  45. H. Ilatikhameneh, T. Ameen, B. Novakovic, Y. Tan, G. Klimeck, and R. Rahman, Sci. Rep. 6, 1 (2016).

    Article  Google Scholar 

  46. T. Agarwal, I. Radu, P. Raghavan, G. Fiori, A. Thean, M. Heyns, and W. Dehaene, Eur. Solid-State Circuits Conf. 2016-Octob, 55 (2016).

Download references

Acknowledgment

The authors would like to gratefully acknowledge DST Extra Mural Research funding Scheme (SERB/F/4240/2016-2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ramesh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pon, A., Bhattacharyya, A. & Ramesh, R. Charge Plasma-Based Phosphorene Tunnel FET Using a Hybrid Computational Method. J. Electron. Mater. 50, 3624–3633 (2021). https://doi.org/10.1007/s11664-021-08882-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08882-z

Keywords

Navigation