Skip to main content
Log in

Influence of HfAlOx in DC, RF and Microwave Noise Performance of Dual-Channel Single-Gate InAs MOSHEMT

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper analyzes the effect of a HfAlOx dielectric in a dual-channel (DC)single-gate (SG) metal oxide semiconductor high-electron-mobility transistor (DCSG-MOSHEMT) on improving device performance metrics. The small-signal analog/RF and noise performance of the device are explored in detail. The physics-based TCAD simulator tool is utilized to characterize the device. A peak drain current of 1.52 mA/µm is achieved due to superior sheet carrier density (ns) of 1.5×1018 cm−3 and low ON resistance. Further, a high positive threshold voltage (VT) of 0.214 V and a peak transconductance of 1.8 ms/µm is achieved with HfAlOx as the dielectric. Moreover, high cutoff frequency (fT) of 530 GHz and maximum frequency of oscillation (fmax) of 840 GHz at Vds = 0.5 V is achieved. The device exhibits a minimum noise figure of 1.32 dB at Vgs = 0.3 V and Vds = 0.5 V. With low noise over a large bandwidth and high-frequency performance, this device can be utilized to design low-noise amplifiers (LNA) for broadband applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Venkatesh, M. Suguna, and N.B. Balamurugan, J. Electron. Mater. 48, 6724 (2019).

    Article  CAS  Google Scholar 

  2. M. Venkatesh, M. Suguna, and N.B. Balamurugan, Silicon 12, 2869 (2020).

    Article  CAS  Google Scholar 

  3. K. Jena, R. Swain, and T.R. Lenka, Int. J. Numer. Model. Electron. Netw. Devices Fields 29, 83 (2016).

    Article  Google Scholar 

  4. Preethi, S., & Balamurugan, N. B., Analytical Modeling of Surrounding Gate Junctionless MOSFET Using Finite Differentiation Method. Silicon (2020).

  5. X. Tan, X.-Y. Zhou, H.-Y. Guo, G.-D. Gu, Y.-G. Wang, X.-B. Song, J.-Y. Yin, Y.-J. Lv, and Z.-H. Feng, Chinese Phys. Lett. 33, 98501 (2016).

    Article  Google Scholar 

  6. S. Yadav, A. Kumar, X.S. Nguyen, K.H. Lee, Z. Liu, W. Xing, S. Masudy-Panah, K. Lee, C.S. Tan, E.A. Fitzgerald, D.A. Antoniadis, Y. Yeo, X. Gong, High mobility In0.30Ga0.70As MOSHEMTs on low threading dislocation density 200 mm Si substrates: A technology enabler towards heterogeneous integration of low noise and medium power amplifiers with Si CMOS, in: 2017 IEEE Int. Electron Devices Meet., 2017: p. 17.4.1-17.4.4.

  7. J. Ajayan, T.D. Subash, and K. Dheena, Superlattices Microstruct. 109, 183 (2017).

    Article  CAS  Google Scholar 

  8. S. Adak, S.K. Swain, A. Singh, H. Pardeshi, S.K. Pati, and C.K. Sarkar, Phys. E Low-Dimensional Syst. Nanostruct. 64, 152 (2014).

    Article  CAS  Google Scholar 

  9. R. Saravana Kumar, A. Mohanbabu, N. Mohankumar, and D. Godwin Raj, Int. J. Electron. 105, 446 (2017).

    Google Scholar 

  10. R. Poornachandran, N. Mohankumar, R. SaravanaKumar, and G. Sujatha, Int. J. Numer. Model. 32, e2625 (2019).

    Google Scholar 

  11. M.D. Lange, X.B. Mei, T.P. Chin, W.H. Yoshida, W.R. Deal, P. Liu, J. Lee, J.J. Uyeda, L. Dang, J. Wang, W. Liu, D.T. Li, M.E. Barsky, Y. Kim, V. Radisic, R. Lai, InAs/InGaAs composite-channel HEMT on InP: Tailoring InGaAs thickness for performance, in: 2008 20th Int. Conf. Indium Phosphide Relat. Mater. 2008: pp. 1–4.

  12. F. Bonani, S.D. Guerrieri, G. Ghione, and M. Pirola, IEEE Trans. Electron. Devices 48, 966 (2001).

    Article  Google Scholar 

  13. S. Karboyan, J.G. Tartarin, M. Rzin, L. Brunel, A. Curutchet, N. Malbert, N. Labat, D. Carisetti, B. Lambert, M. Mermoux, E. Romain-Latu, F. Thomas, C. Bouexière, and C. Moreau, Microelectron. Reliab. 53, 1491 (2013).

    Article  CAS  Google Scholar 

  14. D.M. Fleetwood, IEEE Trans. Nucl. Sci. 62, 1462 (2015).

    Article  CAS  Google Scholar 

  15. D. Nirmal, L. Arivazhagan, A.S. Augustine Fletcher, J. Ajayan, and P. Prajoon, Superlattices Microstruct. 113, 810 (2018).

    Article  CAS  Google Scholar 

  16. S. Dayal, S. Kumar, S. Kumar, H. Arora, R. Laishram, R.K. Chaubey, and B.K. Sehgal, Passivation of AlGaN/GaN HEMT by Silicon Nitride BT, Physics of Semiconductor Devices. ed. V.K. Jain, and A. Verma (Cham: Springer, 2014), pp. 141–143.

    Chapter  Google Scholar 

  17. Y. Zhong, S. Sun, W. Wong, H. Wang, X. Liu, Z. Duan, P. Ding, and Z. Jin, Front. Inf. Technol. Electron. Eng. 18, 1180 (2017).

    Article  Google Scholar 

  18. M. Daoudi, I. Dhifallah, A. Ouerghi, and R. Chtourou, Superlattices Microstruct. 51, 497 (2012).

    Article  CAS  Google Scholar 

  19. A.B. Khan, M.J. Siddiqui, and S.G. Anjum, Mater. Today Proc. 4, 10341 (2017).

    Article  Google Scholar 

  20. TCAD Sentaurus, Sdevice User Guide, ver.G-2016, Synopsys.

  21. J. Ge, H.G. Liu, Y.B. Su, Y.X. Cao, and Z. Jin, Chin. Phys. B. 21, 058501 (2012).

    Article  Google Scholar 

  22. G. Ghione, and F. Filicori, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 12, 425 (1993).

    Article  Google Scholar 

  23. C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 7, 1164 (1988).

    Article  Google Scholar 

  24. D.K. Panda, and T.R. Lenka, Superlattices Microstruct. 112, 374 (2017).

    Article  CAS  Google Scholar 

  25. T. Grasser, T.-W. Tang, H. Kosina, and S. Selberherr, Proc. IEEE. 91, 251 (2003).

    Article  CAS  Google Scholar 

  26. S. Datta, K. Roenker, M. Cahay, and W. Stanchina, Solid-State Electron. 43, 73 (1999).

    Article  CAS  Google Scholar 

  27. S. Selberherr, Analysis and Simulation of Semiconductor Devices. Springer, ISBN:9783709105603 (2004).

  28. D. Kim, and J.A. del Alamo, IEEE Electron. Device Lett. 31, 806 (2010).

    Article  CAS  Google Scholar 

  29. M. Bhattacharya, J. Jogi, R.S. Gupta, and M. Gupta, IEEE Trans. Electron. Devices 59, 1644 (2012).

    Article  CAS  Google Scholar 

  30. N. Mohankumar, B. Syamal, and C.K. Sarkar, IEEE Trans. Electron. Devices 57, 820 (2010).

    Article  CAS  Google Scholar 

  31. C.I. Kuo, H.T. Hsu, C.Y. Wu, E.Y. Chang, Y.L. Chen, and W.C. Lim, Microelectron. Eng. 87, 2625 (2010).

    Article  CAS  Google Scholar 

  32. M. Sánden, O. Marinov, M.J. Deen, and M. Ostling, IEEE Trans. Electron. Devices 49, 514 (2002).

    Article  Google Scholar 

  33. Y. Liu, and Y. Zhuang, J. Semicond. 35, 12 (2014).

    Article  CAS  Google Scholar 

  34. S.D. Nsele, J.G. Tartarin, L. Escotte, S. Piotrowicz, S. Delage, InAlN/GaN HEMT technology for robust HF receivers: An overview of the HF and LF noise performances, 2015 Int. Conf. Noise Fluctuations, ICNF 2015 (2015).

  35. S.K. Saha, Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond (New York: CRC Press/Taylor & Francis, 2015), pp. 41–42

    Google Scholar 

  36. R. Rengel, J. Mateos, D. Pardo, T. González, and M.J. Martín, Semicond. Sci. Technol. 16, 939 (2001).

    Article  CAS  Google Scholar 

  37. D.E.R. Ziel, Noise in Solid State Devices and Circuits (New York: Wiley-Interscience, 1978).

    Google Scholar 

  38. A. Balandin, S.V. Morozov, S. Cai, R. Li, K.L. Wang, G. Wijeratne, and C.R. Viswanathan, IEEE Trans. Microw. Theory Tech. 47, 1413 (1999).

    Article  Google Scholar 

  39. K. Hartmann, and M.J.O. Strutt, IEEE Trans. Electron. Devices. 20, 874 (1973).

    Article  Google Scholar 

  40. S.S.H. Hsu, P. Valizadeh, D. Pavlidis, J.S. Moon, M. Micovic, D. Wong, T. Hussain, Characterization and analysis of gate and drain low-frequency noise in AlGaN/GaN HEMTs, in Proceedings. IEEE Lester Eastman Conf. High Perform. Devices, pp. 453–460 (2002).

  41. Y. Zhu, C. Wei, O. Klimashov, B. Li, C. Zhang and Y. Tkachenko, Gate Width Dependence of Noise Parameters and Scalable Noise Model for HEMTs, in 2008 European Microwave Integrated Circuit Conference, Amsterdam, pp. 298–301 (2008).

  42. S. Lee, K.J. Webb, V. Tilak, and L.F. Eastman, IEEE Trans. Microwave Theory Tech. 51, 1567 (2003).

    Article  CAS  Google Scholar 

  43. J. Lee, A. Kuliev, V. Kumar, R. Schwindt, and I. Adesida, IEEE Microwave Wirel. Compon. Lett. 14, 259 (2004).

    Article  Google Scholar 

  44. R. Poornachandran, N. Mohankumar, R. Saravanakumar, and G. Sujatha, J. Comput. Electron. 18, 1280 (2019).

    Article  CAS  Google Scholar 

  45. A. Tessmann, A. Leuther, F. Heinz, F. Bernhardt, L. John, H. Massler, L. Czornomaz, and T. Merkle, IEEE J. Solid-State Circuits 54, 2411 (2019).

    Article  Google Scholar 

  46. J. Ajayan, T. Ravichandran, P. Mohankumar et al., Semiconductor 52, 1991 (2018).

    Article  CAS  Google Scholar 

  47. X. Zhou, Q. Li, C.W. Tang, and K.M. Lau, IEEE Electron. Device Lett. 33, 1384 (2012).

    Article  CAS  Google Scholar 

  48. P. Chang, H.-C. Chiu, T.-D. Lin et al., Appl. Phys. Express. 4, 114202 (2011).

    Article  Google Scholar 

  49. D.H. Kim, T. Kim, M. Urteaga, and B. Brar, Electron. Lett. 48, 1430 (2012).

    Article  CAS  Google Scholar 

  50. R. Terao, T. Kanazawa, S. Ikeda, Y. Yonai, A. Kato, and Y. Miyamoto, Appl. Phys. Express. 4, 99202 (2011).

    Article  Google Scholar 

  51. Q. Li, X. Zhou, C.W. Tang, and K.M. Lau, IEEE Electron. Device Lett. 33, 1246 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Poornachandran.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poornachandran, R., Mohankumar, N., Saravana Kumar, R. et al. Influence of HfAlOx in DC, RF and Microwave Noise Performance of Dual-Channel Single-Gate InAs MOSHEMT. J. Electron. Mater. 50, 3569–3579 (2021). https://doi.org/10.1007/s11664-021-08845-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08845-4

Keywords

Navigation