Skip to main content
Log in

A Diffusional Study of Electrochromical Effect and Electrointercalation of Li+ Ions in WO3 Thin Films

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper presents a study of physical and electrochemical properties relevant to the lithium ion diffusion process governing WO3 thin films electrochromic phenomenon. The films were prepared from a solution obtained by the sol–gel process and deposited via dip-coating. They were characterized by chronocoulometry, chronoamperometry and in and ex situ ultraviolet–visible spectroscopy during coloring/bleaching of the films. To analyze the experimental data, a mathematical model was applied considering a reaction kinetics controlled by the diffusion of ion pairs. The effects of the intercalation of Li+, Na+ and K+ ions was compared. Theoretical and experimental results for the current, charge density and absorbance profiles in function of time are included in this paper. The highest values obtained were \( \eta = 29.98\,{\text{C/cm}}^{2} \) for electrochromic efficiency, ΔT = 61.6% for optical modulation, \( Q_{i} = 81.78\,{\text{mC/cm}}^{2} \) for charge density, and reversibility of coloring/bleaching in the range of 75–90%. X-Ray diffractometry measurements confirmed the amorphous structure of the films. Fourier transform infrared spectroscopy was employed to analyze the functional groups present in the films structure, while their topology was studied via atomic force microscopy. The collected results confirmed a relationship between the electrochromic and electrochemical reactions, definitively associating color change with cations injection and the reduction of W6+ to W5+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H.C. Moon, Multicolored. ACS Appl. Mater. Interfaces (2016). https://doi.org/10.1021/acsami.6b01307.

    Article  Google Scholar 

  2. C. Granqvist, Electrochromic Metal Oxides, 1st ed. (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2015), pp. 3–33.

    Google Scholar 

  3. K.J. Patel, G.G. Bhatt, S.S. Patel, R.R. Desai, J.R. Ray, C.J. Panchal, P. Suryavanshi, V.A. Kheraj, and A.S. Opanasyuk, J. Nano-Electron. Phys. (2017). https://doi.org/10.21272/jnep.9(3).03040.

    Article  Google Scholar 

  4. Y. Wei, M. Chen, W. Liu, L. Li, and Y. Yan, Electrochim. Acta (2017). https://doi.org/10.1016/j.electacta.2017.07.016.

    Article  Google Scholar 

  5. D.W. Leitzke, C.M. Cholant, D.M. Landarin, C.S. Lucio, L.U. Krüger, A. Gündel, W.H. Flores, M.P. Rodrigues, R.D.C. Balboni, A. Pawlicka, and C.O. Avellaneda, Thin Solid Films (2019). https://doi.org/10.1016/j.tsf.2019.05.018.

    Article  Google Scholar 

  6. V. Buch, A. Chawla, and S. Rawal, Mater. Today (2016). https://doi.org/10.1016/j.matpr.2016.04.025.

    Article  Google Scholar 

  7. G. Yuan, C. Hua, S. Khan, S. Jiang, Z. Wu, Y. Liu, J. Wang, C. Song, and G. Han, Electrochim. Acta (2018). https://doi.org/10.1016/j.electacta.2017.10.193.

    Article  Google Scholar 

  8. L. Pan, Q. Han, Z. Dong, M. Wan, H. Zhu, Y. Li, and Y. Mai, Electrochim. Acta (2019). https://doi.org/10.1016/j.electacta.2019.135107.

    Article  Google Scholar 

  9. X. Che, Z. Wu, G. Dong, X. Diao, Y. Zhou, J. Guo, D. Dong, and M. Wang, Thin Solid Films (2018). https://doi.org/10.1016/j.tsf.2018.07.005.

    Article  Google Scholar 

  10. C. Chananonnawathorna, S. Pudwata, M. Horprathum, P. Eiamchai, P. Limnontakul, C. Salawan, and K. Aiempanakit, Procedia Eng. (2012). https://doi.org/10.1016/j.proeng.2012.02.008.

    Article  Google Scholar 

  11. M. Meenakshi, R. Sivakumar, A. Sivanantharaja, and C. Sanjeeviraja, Adv. Biomater. Res. (2018). http://applispublishers.com/wp-content/uploads/2017/08/Abr-01-000102.pdf. Accessed 06 May 2020.

  12. J. Andrade, I. Cesarino, R. Zhang, J. Kanicki, and A. Pawlicka, Mol. Cryst. Liq. Cryst. (2014). https://doi.org/10.1080/15421406.2014.968030.

    Article  Google Scholar 

  13. S. Torresi, A. Gorenstein, R. Torresi, and M. Vázques, J. Electroanal. Chem. (1991). https://doi.org/10.1016/0022-0728(91)85299-5.

    Article  Google Scholar 

  14. S. Poongodi, P. Kumar, D. Mangalaraj, N. Ponpandian, P. Meena, Y. Masuda, and C. Lee, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.05.122.

    Article  Google Scholar 

  15. M. Kim, H. Choi, and K. Kim, Mol. Cryst. Liq. Cryst. (2014). https://doi.org/10.1080/15421406.2014.933298.

    Article  Google Scholar 

  16. B.W.C. Au, K.Y. Chan, and D. Knipp, Opt. Mater. (2019). https://doi.org/10.1016/j.optmat.2019.05.051.

    Article  Google Scholar 

  17. H. Wei, X. Yan, Q. Wang, S. Wu, Y. Mao, and Z. Luo, Energy Environ. Focus. (2013). https://doi.org/10.1166/eef.2013.1036.

    Article  Google Scholar 

  18. M. Rakibuddin, M.A. Shinde, and H. Kim, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2019.12.096.

    Article  Google Scholar 

  19. J. Cronin, D. Tarico, L. Tonazzi, A. Agrawal, and S. Kennedy, Sol. Energy Mater. Sol. Cells (1993). https://doi.org/10.1016/0927-0248(93)90096-L.

    Article  Google Scholar 

  20. C. Granqvist, Handbook of Inorganic Electrochromic Materials, 1st ed. (Amsterdam: Elsevier, 1995).

    Google Scholar 

  21. C. Granqvist, Sol. Energy Mater. Sol. Cells (2000). https://doi.org/10.1016/S0927-0248(99)00088-4.

    Article  Google Scholar 

  22. S. Deb, Sol. Energy Mater. Sol. Cells (2008). https://doi.org/10.1016/j.solmat.2007.01.026.

    Article  Google Scholar 

  23. C. Granqvist, E. Avendaño, and A. Azens, Thin Solid Films (2013). https://doi.org/10.1016/S0040-6090(03)00983-0.

    Article  Google Scholar 

  24. K. Yamanaka, H. Oakamoto, H. Kidou, and T. Kudo, Jpn. J. Appl. Phys. (1986). https://doi.org/10.1143/JJAP.25.1420.

    Article  Google Scholar 

  25. J. Crank, The Mathematics of Diffusion (London: Oxford University Press, 1975), pp. 11–27.

    Google Scholar 

  26. L. Ran, L. Kerui, G. Wang, L. Li, Q. Zhang, J. Yan, Y. Chen, Q. Zhang, C. Hou, Y. Li, and H. Wang, ACS Nano (2018). https://doi.org/10.1021/acsnano.8b00974.

    Article  Google Scholar 

  27. R. Vijayalakshmi, M. Jayachandran, D. Trivedi, and C. Sanjeeviraja, Ionics (2004). https://doi.org/10.1007/bf02410326.

    Article  Google Scholar 

  28. J. Guo, M. Wang, X. Diao, Z. Zhang, G. Dong, H. Yu, and J. Liu, J. Phys. Chem. C (2018). https://doi.org/10.1021/acs.jpcc.8b05692.

    Article  Google Scholar 

  29. J. Zhang, E. Tracy, D. Benson, and S. Deb, J. Mater. Res. (1993). https://doi.org/10.1557/JMR.1993.2649.

    Article  Google Scholar 

  30. M. Seman and C. Wolden, Sol. Energy Mater. Sol. Cells 82, 517–530 (2004).

    CAS  Google Scholar 

  31. E. Girotto and M. De Paoli, J. Braz. Chem. Soc. (1999). https://doi.org/10.1590/S0103-50531999000500010.

    Article  Google Scholar 

  32. C.-W. Jian, E.-C. Cho, S.-C. Yen, B.-C. Ho, K.-C. Lee, J.-H. Huang, and Y.-S. Hsiao, Dyes Pigments (2018). https://doi.org/10.1016/j.dyepig.2017.09.026.

    Article  Google Scholar 

  33. E. Eren, C. Alver, G. Karaca, E. Uygun, and A. Oksuz, Synth. Met. (2018). https://doi.org/10.1016/j.synthmet.2017.12.003.

    Article  Google Scholar 

  34. E. Bica, L. Muresan, L. Barbu-Tudoran, E. Indrea, I. Popescu, and E. Popovici, Stud. U. Babes-Bol. Che. 3, 15–22 (2009).

    Google Scholar 

  35. L. Muresan, E. Popovici, A. Tomsa, L. Silaghi-Dumitrescu, L. Barbu-Tudoran, and E. Indrea, J. Optoelectron. Adv. Mater. 10, 2261–2264 (2008).

    CAS  Google Scholar 

  36. J-H. Park, K. Kang, In Y. Cha, J. Kim, K. Lee, Y-E. Sung, Bull. Korean Chem. Soc. (2015) https://doi.org/10.1002/bkcs.10424.

  37. M. Sharbatdaran, N. Abdoljavad, and N. Hassan, Iran. J. Chem. Chem. Eng. 25, 25–29 (2006).

    CAS  Google Scholar 

  38. B. Pecquenard, S. Castro-Garcia, J. Livage, P. Zavalij, M. Whittingham, and R. Thouvenot, Chem. Mater. (1998). https://doi.org/10.1021/cm980045n.

    Article  Google Scholar 

  39. M. Deepa, M. Kar, and S. Agnihotry, Thin Solid Films (2004). https://doi.org/10.1016/j.tsf.2004.04.056.

    Article  Google Scholar 

  40. B. Loopstra and H. Rietveld, Acta Cryst. B (1969). https://doi.org/10.1107/S0567740869004146.

    Article  Google Scholar 

  41. J. Coates, Interpretation of Infrared Spectra, a Practical Approach.Encyclopedia of Analytical Chemistry, ed. R.A. Meyers and M.L. McKelvy (New York: Wiley, 2006), https://doi.org/10.1002/9780470027318.a5606

    Chapter  Google Scholar 

  42. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed. (Chichester: Wiley, 2001)https://doi.org/10.1021/ja0153520.

    Book  Google Scholar 

  43. Z. Yingpeng, G. Tao, and J. Bjørn, in 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO) (2018), pp. 1–4 https://doi.org/10.1109/NANO.2018.8626293.

  44. A. Hernandez-Martinez, M. Estevez, S. Vargas, F. Quintanilla, and R. Rodriguez, J. Appl. Res. Technol. (2012).

  45. H. Habazaki, Electrochim. Acta (2002). https://doi.org/10.1016/s0013-4686(02)00435-8.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Fundação de Amparo à Pesquisa do Estado de Rio Grande do Sul (FAPERGS, Grant 19/2551-00011856-8), The Brazilian National Council for Scientific and Technological Development (CNPq, Grants 308752/2017-1 and 307429/2017-2), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (Capes, Grants 1780078 and 88887.481413/2020-00) for the financial support given to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César O. Avellaneda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, M.P., Cholant, C.M., Krüger, L.U. et al. A Diffusional Study of Electrochromical Effect and Electrointercalation of Li+ Ions in WO3 Thin Films. J. Electron. Mater. 50, 1207–1220 (2021). https://doi.org/10.1007/s11664-020-08648-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08648-z

Keywords

Navigation