Skip to main content
Log in

Atmospheric Modified Thiol-Based Solution Deposition for Cu2ZnSn(S,Se)4 Absorber Layer

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Abandoning the traditional deposition of as-prepared Cu2ZnSnS4 (CZTS) thin films in a glove box, a modified thiol-based solution system suitable for deposition in air is described to further reduce device production costs. In this modified approach, metal salts and thiourea are used as the starting materials and are dissolved in a mixed solution of thioglycolic acid and 2-methoxyethanol, forming a homogeneous precursor solution. The as-deposited CZTS thin films are obtained by spin-coating the precursor solution in air, followed by the selenization process to form large-grained Cu2ZnSn(S,Se)4 thin films. Combining the microstructural results with compositional analyses, the optimal selenization conditions for the Cu2ZnSn(S,Se)4 absorber layer were found to be 540°C and 10 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Yang, D. Son, S. Sung, J. Sim, Y. Kim, S. Park, D. Jeon, J. Kim, D. Hwang, C. Jeon, D. Nam, H. Cheong, J. Kang, and D. Kim, J. Mater. Chem. A 4, 10151 (2016).

    Article  CAS  Google Scholar 

  2. S.M. Pawar, A. Inamdar, K. Gurav, S. Shin, J. Gwak, Y. Jo, J. Yun, H. Pak, S. Kwon, H. Kim, J. Kim, and H. Im, Curr. Appl. Phys. 15, 59 (2015).

    Article  Google Scholar 

  3. W. Wang, M. Winkler, O. Gunawan, T. Gokmen, K. Todorov, Y. Zhu, and D. Mitzi, Adv. Energy Mater. 4, 1301465 (2014).

    Article  Google Scholar 

  4. J. Kim, H. Hiroi, T. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. Lee, W. Wang, H. Sugimoto, and D. Mitzi, Adv. Mater. 26, 7427 (2014).

    Article  CAS  Google Scholar 

  5. Y. Gu, H. Shen, C. Ye, X. Dai, Q. Cui, J. Li, F. Hao, X. Hao, and H. Lin, Adv. Funct. Mater. 28, 1703369 (2018).

    Article  Google Scholar 

  6. S. Chen, X. Gong, A. Walsh, and S. Wei, Appl. Phys. Lett. 96, 021902 (2010).

    Article  Google Scholar 

  7. Y. Qi, D. Kou, W. Zhou, Z. Zhou, Q. Tian, Y. Meng, X. Liu, Z. Du, and S. Wu, Energy Environ. Sci. 10, 2401 (2017).

    Article  CAS  Google Scholar 

  8. J. Tao, L. Chen, H. Cao, C. Zhang, J. Liu, Y. Zhang, L. Huang, J. Jiang, P. Yang, and J. Chu, J. Mater. Chem. A 4, 3798 (2016).

    Article  CAS  Google Scholar 

  9. C. Miskin, W. Yang, C. Hages, N. Carter, C. Joglekar, E. Stach, and R. Agrawal, Prog. Photovolt: Res. Appl. 23, 654 (2015).

    Article  CAS  Google Scholar 

  10. S. Saha, A. Guchhait, and A. Pal, Phys. Chem. Chem. Phys. 14, 8090 (2012).

    Article  CAS  Google Scholar 

  11. Y. Yang, G. Wang, W. Zhao, Q. Tian, L. Huang, D. Pan, and A.C.S. Appl, Mater. Interfaces 7, 460 (2015).

    Article  CAS  Google Scholar 

  12. Q. Tian, G. Wang, W. Zhao, Y. Chen, Y. Yang, L. Huang, and D. Pan, Chem. Mater. 26, 3098 (2014).

    Article  CAS  Google Scholar 

  13. Q. Tian, L. Huang, W. Zhao, Y. Yang, G. Wang, and D. Pan, Green Chem. 17, 1269 (2015).

    Article  CAS  Google Scholar 

  14. Y. Yang, X. Kang, L. Huang, S. Wei, and D. Pan, J. Power Sources 313, 15 (2016).

    Article  CAS  Google Scholar 

  15. J. Fu, J. Fu, Q. Tian, H. Wang, F. Zhao, J. Kong, X. Zhao, S. Wu, and A.C.S. Appl, Energy Mater. 1, 594 (2018).

    CAS  Google Scholar 

  16. C. Yan, J. Huang, K. Sun, S. Johnston, Y. Zhang, H. Sun, A. Pu, M. He, F. Liu, K. Eder, L. Yang, J. Cairney, N. Ekins-Daukes, Z. Hameiri, J. Stride, S. Chen, M. Green, and X. Hao, Nat. Energy 3, 764 (2018).

    Article  CAS  Google Scholar 

  17. S. Ge, H. Gao, R. Hong, J. Li, Y. Mai, X. Lin, and G. Yang, ChemSusChem 12, 4692 (2019).

    Article  Google Scholar 

  18. H. Luan, B. Yao, Y. Li, R. Liu, Z. Ding, Y. Sui, Z. Zhang, H. Zhao, and L. Zhang, Sol. Energy Mater. Sol. Cells 195, 55 (2019).

    Article  CAS  Google Scholar 

  19. Y. Udaka, S. Takaki, K. Isowaki, T. Nagai, K.M. Kim, S. Kim, H. Tampo, H. Shibata, K. Matsubara, S. Niki, N. Sakai, T. Kato, H. Sugimoto, and N. Terada, Phys. Status Sol. C 14, 1600178 (2017).

    Google Scholar 

  20. K. Sun, C. Yan, F. Liu, J. Huang, F. Zhou, J.A. Stride, M. Green, and X. Hao, Adv. Energy Mater. 6, 1600046 (2016).

    Article  Google Scholar 

  21. Y. Song, B. Yao, Y. Li, Z. Ding, R. Liu, Y. Sui, L. Zhang, Z. Zhang, H. Zhao, and A.C.S. Appl, Energy Mater. 2, 2230 (2019).

    CAS  Google Scholar 

  22. S. Gao, Y. Zhang, J. Ao, X. Li, S. Qiao, Y. Wang, S. Lin, Z. Zhang, D. Wang, Z. Zhou, G. Sun, S. Wang, and Y. Sun, Sol. Energy Mater. Sol. Cells 182, 228 (2018).

    Article  CAS  Google Scholar 

  23. H. Xin, S. Vorpahl, A. Collord, I. Braly, A. Uhl, B. Krueger, D. Ginger, and H. Hillhouse, Phys. Chem. Chem. Phys. 17, 23859 (2015).

    Article  CAS  Google Scholar 

  24. Q. Tian, H. Lu, Y. Du, J. Fu, X. Zhao, S. Wu, and S. Liu, Sol. RRL 2, 1800233 (2018).

    Article  Google Scholar 

  25. H. Xie, S. López-Marino, T. Olar, Y. Sánchez, M. Neuschitzer, F. Oliva, S. Giraldo, V. Izquierdo-Roca, I. Lauerman, and A.A.C.S. Appl, Mater. Interfaces 8, 5017 (2016).

    Article  CAS  Google Scholar 

  26. Y. Yang, X. Kang, and D. Pan, ACS Appl. Mater. Interfaces 9, 23878 (2017).

    Article  CAS  Google Scholar 

  27. T. Prabhakar and N. Jamparna, Sol. Energy Mater. Sol. Cells 95, 1001 (2011).

    Article  CAS  Google Scholar 

  28. M. Suryawanshi, U. Ghorpade, U. Suryawanshi, M. He, J. Kim, M. Gang, P. Patil, A. Moholkar, J. Yun, and J. Kim, ACS Omega 2, 9211 (2017).

    Article  CAS  Google Scholar 

  29. C. Malerba, M. Valentini, and A. Mittiga, Sol. RRL 1, 1700101 (2017).

    Article  Google Scholar 

  30. J. Cho, A. Ismail, S. Park, W. Kim, S. Yoon, B. Min, and A.C.S. Appl, Mater. Interfaces 5, 4162 (2013).

    Article  CAS  Google Scholar 

  31. S. Haass, C. Andres, R. Figi, C. Schreiner, M. Bürki, Y. Romanyuk, and A. Tiwari, Adv. Energy Mater. 8, 1701760 (2017).

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61804085), Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region (Grant No. NJYT-19-B07), Starting Research Projects of Inner Mongolia Normal University (Grant No. 2017YJRC033), National Students’ Platform for Innovation and Entrepreneurship Training Program (Grant No. 201810135002), and Graduate Scientific Research Innovation Program of Inner Mongolia Education Department (Grant No. S2018111961Z).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanchun Yang or O. Tegus.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 360 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Cui, G., Yang, Y. et al. Atmospheric Modified Thiol-Based Solution Deposition for Cu2ZnSn(S,Se)4 Absorber Layer. J. Electron. Mater. 49, 6208–6213 (2020). https://doi.org/10.1007/s11664-020-08375-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08375-5

Keywords

Navigation