Skip to main content
Log in

Electrical, Magnetic and Dielectric Properties of Cobalt-Doped Barium Hexaferrite BaFe12−xCoxO19 (x = 0.0, 0.05, 0.1 and 0.2) Ceramic Prepared via a Chemical Route

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

BaFe12−x CoxO19 (BHFC) hexaferrites with compositions (x = 0.0, 0.05, 0.1 and 0.2) were successfully synthesized by a chemical route at 1150°C for 12 h. Single-phase formation for BaFe12−x CoxO19 (x = 0.0, 0.05, 0.1) were confirmed by x-ray diffraction (XRD) patterns. However, a small amount of secondary phase of Fe2O3 was found in the case of high-percentage substitution of Co (x = 0.2). Le Bail analysis and transmission electron microscopy (TEM) analysis confirmed the existence of a hexagonal structure in the BHFC ceramics for all the synthesized compositions with lattice parameters a = b = 5.88603 Å, c = 23.18299 Å and space group P63/mmc. The average crystallite sizes were found to be 41.48 nm, 39.02 nm, 35.99 nm and 33.56 nm, respectively, using the Debye–Scherer equation. The Fourier transform infrared (FTIR) spectrum was recorded in the frequency range of 5000–400 cm−1 at room temperature to explain the presence of M–O such as Fe–O, Ba–O and Co–O bonds and Fe–O–Fe (M–O–M) bonds in BHFC ferrites. The presence of M–O and M–O–M bonds was also confirmed by the phase formation of hexagonal ferrites. The hexagonal plate-like structure was observed using scanning electron microscopy (SEM). BHFC ceramics displayed average grain size 0.50 μm, 0.84 μm and 1.0 μm for the compositions (x = 0.0, 0.05 and 0.1), respectively. Magnetic, dielectric and AC conductivity measurements were carried out using a vibrating-sample magnetometer (VSM) and impedance analyzer, respectively. The saturation magnetization (Ms) of the BHFC ceramic observed by magnetic measurements was lower than pure barium hexaferrite materials. The value of the dielectric constant (ε) for the BHFC ceramic was found to be 2.3 × 103 at 100 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.H. Mubarak, O.A. Mahmood, and Z.J. Hamakhan, Int. J. Appl. Eng. 13, 6369 (2018).

    Google Scholar 

  2. A.R. Yasemian, M.A. Kashi, and A. Ramazani, J. Mater. Sci.: Mater. Electron. 30, 21278 (2019).

    CAS  Google Scholar 

  3. P. Tartaj, M.P. Morales, T.G. Carreño, S.V. Verdaguer, and C.J. Serna, Adv. Mater. 23, 5243 (2011).

    CAS  Google Scholar 

  4. A. Ashima, S. Sanghi, A. Agarwal, and R. Reetu, J. Alloys Compd. 513, 436 (2012).

    CAS  Google Scholar 

  5. R. Jasrotia, V.P. Singh, R. Kumar, K. Singh, M. Chandel, and M. Singh, Results Phys. 12, 1933 (2019).

    Google Scholar 

  6. V.V. Soman, V.M. Nanoti, and D.K. Kulkarni, Ceram. Int. 39, 5713 (2013).

    CAS  Google Scholar 

  7. Ü. ÖzgÜr and Y. Alivov, J. Mater. Sci.: Mater. Electron. 20, 911 (2009).

    Google Scholar 

  8. M.J. Iqbal, M.N. Ashiq, P.H. Gómez, J.M.M. Munoz, and C.T. Cabrera, J. Alloys Compd. 500, 113 (2010).

    CAS  Google Scholar 

  9. K. Martirosyan, E. Galstyan, S. Hossain, Y.-J. Wang, and D. Litvinov, Mater. Sci. Eng. B 176, 8 (2011).

    CAS  Google Scholar 

  10. S. Hussain, N.A. Shah, A. Maqsood, A. Ali, M. Naeem, and W.A.A. Syed, J. Supercond. Nov. Magn. 24, 1245 (2011).

    CAS  Google Scholar 

  11. Z. Mosleh, P. Kamelin, A. Poorbaferani, M. Ranjbar, and H. Salamati, J. Magn. Magn. Mater. 397, 101 (2016).

    CAS  Google Scholar 

  12. H. Sözeri, H. Deligöz, H. Kavas, and A. Baykal, Ceram. Int. 40, 8645 (2014).

    Google Scholar 

  13. W. Zhao, Q. Zhang, X. Tang, and H. Cheng, Chin. Sci. Bull. 50, 1404 (2005).

    CAS  Google Scholar 

  14. S.H. Mahmood, A.N. Aloqaily, Y. Maswadeh, A. Awadallah, I. Bsoul, M. Awawdeh, and H. Juwhari, Solid State Phenom. 232, 65 (2015).

    Google Scholar 

  15. H. Cao, P. Lu, Z. Yu, J. Chen, and S. Wang, Superlattice. Microst. 73, 113 (2014).

    CAS  Google Scholar 

  16. P. Lu, X. Zhang, H. Cao, Z. Yu, N. Cai, T. Gao, and S. Wang, J. Mater. Sci. 49, 3177 (2014).

    CAS  Google Scholar 

  17. H. Pan, J. Phys. Chem. C 118 (24), 13248 (2014).

  18. S. Ram, J. Magn. Magn. Mater. 82, 129 (1989).

    CAS  Google Scholar 

  19. A.V. Anupama, W. Keune, and B. Sahoo, J. Magn. Magn. Mater. 439, 156 (2017).

    CAS  Google Scholar 

  20. H.K. Choudhary, R. Kumar, S.P. Pawar, S. Bose, and B. Sahoo, J. Electron. Mater. 49, 1618 (2020).

    CAS  Google Scholar 

  21. H.K. Choudhary, R. Kumar, A.V. Anupama, and B. Sahoo, Ceram. Int. 44, 8877 (2018).

    CAS  Google Scholar 

  22. H.K. Choudhary, S.P. Pawar, R. Kumar, A.V. Anupama, S. Bose, and B. Sahoo, Chem. Select. 2, 830 (2017).

    Google Scholar 

  23. H.K. Choudhary, B. Sahoo, S.P. Pawar, and S. Bose, Asian J. Converg. 3, 918 (2017).

    Google Scholar 

  24. H.K. Choudhary, S.P. Pawar, S. Bose, and B. Sahoo, AIP Conf. Proc. 1953, 120061 (2018).

    Google Scholar 

  25. T. Rusianto, M.W. Wildan, K. Abraha, and K. Kusmono, Int. J. Technol. 6, 1017 (2015).

    Google Scholar 

  26. P.N. Anantharamaiah, N.S. Chandra, H.M. Shashanka, R. Kumar, and B. Sahoo, Adv. Powder Technol. (2020). https://doi.org/10.1016/j.apt.2020.04.004.

    Article  Google Scholar 

  27. V. Vaishali, V. Soman, M. Nanoti, D.K. Kulkarni, and V.V. Soman, Phys. Proc. 54, 30 (2014).

    Google Scholar 

  28. A. Kumar, S.S. Yadava, P. Gautam, A. Khare, and K.D. Mandal, J. Electroceram. 42, 47 (2019).

    CAS  Google Scholar 

  29. S. Kumar, S. Supriya, and M. Kar, Mater. Res. Express 4, 126302 (2017).

    Google Scholar 

  30. M.A.P. Buzinaro, N.S. Ferreira, F. Cunha, and M.A. Macêdo, Ceram. Int. 42, 5865 (2016).

    CAS  Google Scholar 

  31. K.K. Mallick, P. Shepherd, and R.J. Green, J. Magn. Magn. Mater. 312, 418 (2007).

    CAS  Google Scholar 

  32. J.H. You and S.I. Yoo, J. Magn. Magn. Mater. 471, 255 (2019).

    CAS  Google Scholar 

  33. N. Tran, D.H. Kim, and B.W. Le, J. Korean Phys. Soc. 72, 731 (2018).

    CAS  Google Scholar 

  34. A. Arora and S.B. Narang, J. Mater. Sci.: Mater. Electron. 27, 10157 (2016).

    CAS  Google Scholar 

  35. G.R. Gordani, A. Ghasemi, and A. Saidi, Ceram. Int. 40, 4945 (2014).

    CAS  Google Scholar 

  36. A. Kumar, S.S. Yadava, P. Gautam, A. Khare, L. Singh, and K.D. Mandal, J. Aust. Ceram. Soc. 55, 1187 (2019).

    CAS  Google Scholar 

  37. K. Tanwar, D.S. Gyan, P. Gupta, S. Pandey, O. Parkash, and D. Kumar, RSC Adv. 8, 19600 (2018).

    CAS  Google Scholar 

  38. N.A. Hoque, P. Thakur, P. Biswas, MdM Saikh, S. Roy, B. Bagchi, S. Das, and P.P. Ray, J. Mater. Chem. A6, 13848 (2018).

    Google Scholar 

  39. S.S. Yadava, A. Khare, P. Gautam, A. Kumar, and K.D. Mandal, New J. Chem. 41, 4611 (2017).

    CAS  Google Scholar 

  40. S.S. Yadava, L. Singh, M. Ji, A. Kumar, K.D. Mandal, and Y. Lee, J. Mater. Sci.: Mater. Electron. 29, 13389 (2018).

    CAS  Google Scholar 

  41. B.K. Bammannavar and L.R. Naik, Smart Mater. Struct. 18, 085013 (2009).

    Google Scholar 

  42. C. C. Chauhan, R. B. Jotania, and K. R. Jotania, Int. J. Adv. Res. 1(4), 25 (2012).

  43. Y.B. Taher, A. Oueslati, N.K. Maaloul, K. Khirouni, and M. Gargouri, Appl. Phys. A 120, 1537 (2015).

    Google Scholar 

  44. M. Okutana, E. Basaran, H.I. Bakan, and F. Yakuphanoglu, Phys. B 364, 300 (2005).

    Google Scholar 

  45. M.A. Ahmed, M.A. E1 Hiti, M.K. E1 Nimr, and M.A. Amer, J. Magn. Magn. Mater. 152, 391 (1996).

  46. S.K. Chawla, R.K. Mudsainiyan, S.S. Meena, and S.M. Yusuf, J. Magn. Magn. Mater. 350, 23 (2014).

    CAS  Google Scholar 

  47. H. Sözeri, J. Magn. Magn. Mater. 321, 2717 (2009).

    Google Scholar 

  48. M. Kishimoto, S. Kitahata, and M. Amemiya, J. Appl. Phys. 61, 3875 (1987).

    CAS  Google Scholar 

  49. G. Mendoza-Suarez, L.P. Rivas-Vazquez, J.C. Corral-Huacuz, A.F. Fuentes, and J.I. Escalante-Garcia, Physica B 339, 110–118 (2003).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Central Instrument Facility Center (CIFC), IIT (BHU), for providing SEM, TEM and MPMS facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. D. Mandal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Verma, M.K., Singh, S. et al. Electrical, Magnetic and Dielectric Properties of Cobalt-Doped Barium Hexaferrite BaFe12−xCoxO19 (x = 0.0, 0.05, 0.1 and 0.2) Ceramic Prepared via a Chemical Route. J. Electron. Mater. 49, 6436–6447 (2020). https://doi.org/10.1007/s11664-020-08364-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08364-8

Keywords

Navigation