Skip to main content
Log in

Crack Effect on the Equivalent Thermal Conductivity of Porously Sintered Silver

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Characterizations of equivalent thermal conductivity (ETC) of sintered silver is an important topic due to the thermal–mechanical reliability requirements of electronic packaging. In this paper, the effect of various types of cracks on the ETC of sintered silver are discussed. A numerical method to simulate the heat transfer behaviors of porous sintered silver containing the crack effect is presented. The results show that the ETC of sintered silver depends significantly on the crack length, crack orientation, porosity, and pore shape. Theoretical formulae to estimate the ETC of sintered silver are also presented, in which the effects of arbitrary crack depth, arbitrary crack orientation, arbitrary porosity, and arbitrary pore shape factor on ETC are included. It has been found that the influence of the side edge crack on the reduction of the ETC of sintered silver is the most obvious compared with the center crack and the upper edge crack. This study presents a quantitative method to evaluate the crack effect on the ETC of porous sintered silver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Chen, S. Nagao, H. Zhang, J. Jiu, T. Sugahara, K. Suganuma, and K. Tsuruta, J. Electron. Mater. 46, 1576 (2017).

    Article  CAS  Google Scholar 

  2. Y.H. Mei, G. Chen, X. Li, G.Q. Lu, and X. Chen, Solder Surf. Mt Tech. 25, 107 (2013).

    Article  CAS  Google Scholar 

  3. K.S. Siow, J. Electron. Mater. 43, 947 (2014).

    Article  CAS  Google Scholar 

  4. Y. H. Mei, Z. Wang, K.S. Siow, in Die-Attach Materials for High Temperature Applications in Microelectronics Packaging, ed. by Siow and Kim Shyong (Springer, Cham, 2019), p. 125–150.

  5. R. Kimura, Y. Kariya, N. Mizumura and K. Sasaki, Mater Trans, M2017392 (2018).

  6. Y. Tan, X. Li, G. Chen, Y.H. Mei, and X. Chen, J. Electron. Mater. 44, 761 (2015).

    Article  CAS  Google Scholar 

  7. R. Shioda, Y. Kariya, N. Mizumura, and K. Sasaki, J. Electron. Mater. 46, 1155 (2017).

    Article  CAS  Google Scholar 

  8. P. Agyakwa, J. Dai, J. Li, B. Mouawad, L. Yang, M. Corfield, and C.M. Johnson J Microsc-Oxford. 0(0), 1 (2019).

  9. J. Dai, J. Li, P. Agyakwa, M. Corfield, and C.M. Johnson, IEEE T Device Mater. Reliab. 18, 256 (2018).

    Article  CAS  Google Scholar 

  10. T. Herboth, M. Guenther, A. Fix, and J. Wilde in 2013 IEEE 63rd Electronic Components and Technology Conference, 1621 (2013).

  11. C. Chen, S. Nagao, K. Suganuma, J. Jiu, T. Sugahara, H. Zhang, and K. Tsuruta, Acta Mater. 129, 41 (2017).

    Article  CAS  Google Scholar 

  12. S. Sakamoto, T. Sugahara, and K. Suganuma, J. Maters. Sci. Mater. Electron. 24, 1332 (2013).

    Article  CAS  Google Scholar 

  13. J. Carr, X. Milhet, P. Gadaud, S.A. Boyer, G.E. Thompson, and P. Lee, J. Mater. Process Technol. 225, 19 (2015).

    Article  CAS  Google Scholar 

  14. T. Youssef, W. Rmili, E. Woirgard, S. Azzopardi, N. Vivet, D. Martineau, and C. Richard, Microelectron. Reliab. 55, 1997 (2015).

    Article  CAS  Google Scholar 

  15. J. Ordonez-Miranda, M. Hermens, I. Nikitin, V.G. Kouznetsova, O. van der Sluis, M.A. Ras, and C.S. Torres, Int. J. Therm. Sci. 108, 185 (2016).

    Article  CAS  Google Scholar 

  16. F. Qin, Y.K. Hu, Y.W. Dai, T. An, and P. Chen, Microelectron. Reliab. 108, 113633 (2020).

    Article  CAS  Google Scholar 

  17. S.A. Paknejad and S.H. Mannan, Microelectron. Reliab. 70, 1 (2017).

    Article  CAS  Google Scholar 

  18. K.S. Siow and S.T. Chua, Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00394-0.

    Article  Google Scholar 

  19. X. Long, B. Hu, Y. Feng, C. Chang, and M. Li, Int. J. Mech. Sci. 161, 105020 (2019).

    Article  Google Scholar 

  20. P. Gadaud, V. Caccuri, D. Bertheau, J. Carr, and X. Milhet, Mater. Sci. Eng. A 669, 379 (2016).

    Article  CAS  Google Scholar 

  21. I. Sumirat, Y. Ando, and S. Shimamura, J. Porous. Mater. 13, 439 (2006).

    Article  CAS  Google Scholar 

  22. A. El Moumen, T. Kanit, A. Imad, and H. El Minor, Comp. Mater. Sci. 97, 148 (2015).

    Article  Google Scholar 

  23. H.S. Carslaw and J.C. Jaeger, 2nd Edition. (Clarendon, Oxford, 1959), pp. 1–84.

  24. A.A. Wereszczak, D.J. Vuono, H. Wang, M.K. Ferber, and Z. Liang, Properties of Bulk Sintered Silver as a Function of Porosity (No. ORNL/TM-2012/130), Oak Ridge National Lab. (ORNL), Oak Ridge, TN, USA, (2012).

  25. N. Heuck, A. Langer, A. Stranz, G. Palm, R. Sittig, A. Bakin, and A. Waag, IEEE Trans. Compon. Pack Manuf. 1, 1846 (2011).

    Article  CAS  Google Scholar 

  26. W. Kaddouri, A.E. Moumen, T. Kanit, S. Madani, and A. Imad, Mech. Mater. 92, 41 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the National Natural Science Foundation of China (11902009 and 11672009), the Beijing Natural Science Foundation (2204074), the Scientific Research Common Program of Beijing Municipal Commission of Education (KM202010005034), the China Postdoctoral Science Foundation (2019M650403) and the Chaoyang District Postdoctoral Science Foundation (2019ZZ-47).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwei Dai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, F., Hu, Y., Dai, Y. et al. Crack Effect on the Equivalent Thermal Conductivity of Porously Sintered Silver. J. Electron. Mater. 49, 5994–6008 (2020). https://doi.org/10.1007/s11664-020-08325-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08325-1

Keywords

Navigation