Skip to main content
Log in

Effects of Cooling Process on GaN Crystal Growth by Na Flux Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of cooling on the yield (percentage of Ga in the original melt that is incorporated into the GaN crystal) and morphology of GaN crystals grown by the Na flux method have been investigated. Yields of pyramidal GaN crystals of up to 94.9% were obtained by spontaneous crystallization using the slow cooling method. A lower cooling rate contributed to higher yield of GaN crystals. Scanning electron microscopy observations indicated that the crystalline perfection increased as the cooling rate was decreased. Instabilities such as macrosteps, cellular structures, and hopper crystals (a form of crystal defined by its “hoppered” shape) were observed after crystal growth at higher cooling rates. These results suggest ways to improve the yield and control the growth of perfect GaN crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, J. Cryst. Growth 221, 316 (2000).

    Article  CAS  Google Scholar 

  2. K. Fujito, S. Kubo, H. Nagaoka, T. Mochizuki, H. Namita, and S. Nagao, J. Cryst. Growth 311, 3011 (2009).

    Article  CAS  Google Scholar 

  3. A. Usui, H. Sunakawa, A. Sakai, and A.A. Yamaguchi, Jpn. J. Appl. Phys. 2 Lett. 36, 899 (1997).

    Article  Google Scholar 

  4. A. Yoshikawa, E. Ohshima, T. Fukuda, H. Tsuji, and K. Oshima, J. Cryst. Growth 260, 67 (2004).

    Article  CAS  Google Scholar 

  5. T. Hashimoto, F. Wu, J.S. Speck, and S. Nakamura, J. Cryst. Growth 310, 3907 (2008).

    Article  CAS  Google Scholar 

  6. R. Dwilinski, R. Doradzinski, J. Garczynski, L.P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, and H. Hayashi, J. Cryst. Growth 311, 3015 (2009).

    Article  CAS  Google Scholar 

  7. M. Bockowski, P. Strak, I. Grzegory, B. Lucznik, and S. Porowski, J. Cryst. Growth 310, 3924 (2008).

    Article  CAS  Google Scholar 

  8. H. Yamane, M. Shimada, S.J. Clarke, and F.J. DiSalvo, Chem. Mater. 9, 413 (1997).

    Article  CAS  Google Scholar 

  9. M. Aoki, H. Yamane, M. Shimada, S. Sarayama, and F.J. DiSalvo, J. Cryst. Growth 242, 70 (2002).

    Article  CAS  Google Scholar 

  10. Y. Mori, M. Imade, K. Murakami, H. Takazawa, H. Imabayashi, Y. Todoroki, K. Kitamoto, M. Maruyama, M. Yoshimura, Y. Kitaoka, and T. Sasaki, J. Cryst. Growth 350, 72 (2012).

    Article  CAS  Google Scholar 

  11. Y. Mori, Y. Kitaoka, M. Imade, N. Miyoshi, M. Yoshimura, and T. Sasaki, Phys. Status Solidi C 8, 1445 (2011).

    Article  CAS  Google Scholar 

  12. H. Yamane, M. Aoki, T. Yamada, M. Shimada, H. Goto, T. Goto, H. Makino, T. Yao, S. Sarayama, H. Iwata, and F.J. DiSalvo, Jpn. J. Appl. Phys. Part 1 Regul. Pap. Brief Commun. Rev. Pap. 44, 3157 (2005).

    Article  CAS  Google Scholar 

  13. M. Aoki, H. Yamane, M. Shimada, T. Sekiguchi, T. Hanada, T. Yao, S. Sarayama, and F.J. DiSalvo, J. Cryst. Growth 218, 7 (2000).

    Article  CAS  Google Scholar 

  14. S. Sarayama and H. Iwata, Ricoh Tech. Rep. 30, 9 (2004).

    Google Scholar 

  15. W.J. Wang, Y.T. Song, W.X. Yuan, Y.G. Cao, X. Wu, and X.L. Chen, Appl. Phys. A-Mater. Sci. Process. 78, 29 (2004).

    Article  CAS  Google Scholar 

  16. M. Honjo, H. Imabayashi, H. Takazawa, Y. Todoroki, D. Matsuo, K. Murakami, M. Maruyama, M. Imade, M. Yoshimura, and T. Sasaki, Jpn. J. Appl. Phys. 51, 10021 (2012).

    Article  Google Scholar 

  17. M. Morishita, F. Kawamura, M. Kawahara, M. Yoshimura, Y. Mori, and T. Sasaki, J. Cryst. Growth 284, 91 (2005).

    Article  CAS  Google Scholar 

  18. W. Berg, Proc. R. Soc. A 164, 79 (1938).

    CAS  Google Scholar 

  19. I. Grzegory, J. Jun, M. Boćkowski, S. Krukowski, M. Wroblewski, B. Łucznik, and S. Porowski, J. Phys. Chem. Solids 56, 639 (1995).

    Article  CAS  Google Scholar 

  20. I. Sunagawa, Forma 14, 147 (1999).

    Google Scholar 

  21. A. Jiři Čejka and S. Corma, Zones, Zeolites and Catalysis, 1st ed. (Weinheim: Wiley-VCH, 2010), pp. 1–55.

    Book  Google Scholar 

  22. I.V. Markov, Crystal Growth for Beginners, 2nd ed. (Singapore: World Scientific, 2003), pp. 77–127.

    Book  Google Scholar 

  23. M. Morishita, F. Kawamura, M. Kawahara, M. Yoshimura, Y. Mori, and T. Sasaki, J. Cryst. Growth 270, 402 (2004).

    Article  CAS  Google Scholar 

  24. I. Sunagawa, Crystals: Growth, Morphology and Perfection (Cambridge: Cambridge University, 2005), pp. 32–34.

    Book  Google Scholar 

  25. Y. Mori, Y. Kitaoka, M. Imade, F. Kawamura, N. Miyoshi, M. Yoshimura, and T. Sasaki, Phys. Status Solidi A 207, 1283 (2010).

    Article  CAS  Google Scholar 

  26. M. Aoki, H. Yamane, M. Shimada, S. Sarayama, and F.J. DiSalvo, Mater. Lett. 56, 660 (2002).

    Article  CAS  Google Scholar 

  27. T. Sasakia, Y. Mori, F. Kawamura, M. Yoshimura, and Y. Kitaoka, J. Cryst. Growth 310, 1288 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingbin Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Li, Z., Fan, S. et al. Effects of Cooling Process on GaN Crystal Growth by Na Flux Method. J. Electron. Mater. 49, 5260–5265 (2020). https://doi.org/10.1007/s11664-020-08230-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08230-7

Keywords

Navigation