Skip to main content
Log in

Effect of Zinc Addition on the Evolution of Interfacial Intermetallic Phases at Near-Eutectic 50In-50Sn/Cu Interfaces

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of Zn addition on the evolution of IMC at near-eutectic 50In-50Sn/Cu interfaces was investigated at 210°C. In 50In-(50-x)Sn-xZn/Cu(x = 0, 6) diffusion couples, two types of intermetallic compound layers were observed: ε-Cu3(In,Sn) adjacent to the Cu substrate and η-Cu2(In,Sn) adjacent to the solder, which were formed though a solid–solid diffusion reaction and solid–liquid reaction, respectively. The growth of ε-Cu3(In,Sn) was at the expense of η-Cu2(In,Sn). In 50In-44Sn-6Zn/Cu diffusion couple, the growth of ε-Cu3(In,Sn) was grain-boundary diffusion controlled and n (the time constant) was 0.31. But in the 50In-50Sn/Cu diffusion couple, due to the slow growth of η-Cu2(In,Sn), the time constant of ε-Cu3(In,Sn) was down to 0.19. With the addition of Zn in the 50In-50Sn/Cu couple, the diffusion of Cu was alleviated. Zn exhibited high activity and moderated the dissipation of the main atoms (In/Sn) in the solder. So the growth of Cu3(In,Sn) was suppressed significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Li, F. Wu, and Y.C. Chan, J. Mater. Sci. Mater. Electron. 26, 8522 (2015).

    Article  CAS  Google Scholar 

  2. S.K. Lin, R.B. Chang, S.W. Chen, M.Y. Tsai, and C.M. Hsu, J. Mater. Sci. 49, 3805 (2014).

    Article  CAS  Google Scholar 

  3. G. Yoo and J.H. Park, J. Korean Phys. Soc. 65, 960 (2014).

    Article  CAS  Google Scholar 

  4. X. Liu, R.W. Davis, L.C. Hughes, M.H. Rasmussen, R. Bhat, C.E. Zah, and J. Stradling, J. Appl. Phys. 100, 013104 (2006).

    Article  CAS  Google Scholar 

  5. J.C. Leong, L.C. Tsao, C.J. Fang, and C.P. Chu, J. Mater. Sci. Mater. Electron. 22, 1443 (2011).

    Article  CAS  Google Scholar 

  6. S.Y. Chang, L.C. Tsao, M.W. Wu, and C.W. Chen, J. Mater. Sci. Mater. Electron. 23, 100 (2011).

    Article  CAS  Google Scholar 

  7. J. Pstruś, T. Gancarz, and P. Fima, Adv. Mater. Sci. Eng. 2017, 1 (2017).

    Article  CAS  Google Scholar 

  8. Y.K. Jee, Y.H. Ko, and J. Yu, J. Mater. Res. 22, 1879 (2007).

    Article  CAS  Google Scholar 

  9. T. Xu, X. Hu, Y. Li, and X. Jiang, J. Mater. Sci. Mater. Electron. 28, 18515 (2017).

    Article  CAS  Google Scholar 

  10. S. Sommadossi, W. Gust, and E.J. Mittemeijer, Mater. Chem. Phys. 77, 924 (2002).

    Article  Google Scholar 

  11. Y. Yao, J. Zhou, F. Xue, and X. Chen, J. Alloy Compd. 682, 627 (2016).

    Article  CAS  Google Scholar 

  12. C.H. Wang and K.T. Li, Mater. Chem. Phys. 164, 223 (2015).

    Article  CAS  Google Scholar 

  13. P. Šebo, Z. Moser, P. Švec, D. Janičkovič, E. Dobročka, W. Gasior, and J. Pstru, J. Alloy Compd. 480, 409 (2009).

    Article  CAS  Google Scholar 

  14. T.H. Chuang, C.L. Yu, S.Y. Chang, and S.S. Wang, J. Electron. Mater. 31, 640 (2002).

    Article  CAS  Google Scholar 

  15. D.G. Kim and S.B. Jung, J. Alloy Compd. 386, 151 (2005).

    Article  CAS  Google Scholar 

  16. S.K. Lin, T.Y. Chung, S.W. Chen, and C.H. Chang, J. Mater. Res. 24, 2628 (2009).

    Article  CAS  Google Scholar 

  17. S.K. Lin, C.F. Yang, S.H. Wu, and S.W. Chen, J. Electron. Mater. 37, 498 (2008).

    Article  CAS  Google Scholar 

  18. Y. Tang, S.M. Luo, Z.H. Li, C.J. Hou, and G.Y. Li, J. Electron. Mater. 47, 5913 (2018).

    Article  CAS  Google Scholar 

  19. R.A. Gagliano and M.E. Fine, JOM-US 53, 33 (2001).

    Article  CAS  Google Scholar 

  20. K. Kanlayasiri and K. Sukpimai, J. Alloy Compd. 668, 169 (2016).

    Article  CAS  Google Scholar 

  21. D.L. Wang, Y. Yuan, and L. Luo, J. Mater. Sci. Mater. Electron. 23, 61 (2011).

    Article  CAS  Google Scholar 

  22. L.P. Mo, F.S. Wu, C.Q. Liu, in 2015 IEEE 65th Electronic Components and Technology Conference (2015), pp. 1854–1858.

  23. D. Sarwono and K.L. Lin, J. Electron. Mater. 48, 99 (2018).

    Article  CAS  Google Scholar 

  24. C.H. Wang and C.Y. Kuo, Mater. Chem. Phys. 130, 651 (2011).

    Article  CAS  Google Scholar 

  25. S.K. Kang, D. Leonard, D.Y. Shih, L. Gignac, D.W. Henderson, S. Cho, and J. Yu, J. Electron. Mater. 35, 479 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support provided by the Harbin Youth Reserve Talents Project [Grant Number RC2014QN017012]. The authors would like to thank Professor Chen and Professor Ma at the center for material analysis and testing, who provided experimental help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingze Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Mao, D., Chen, H. et al. Effect of Zinc Addition on the Evolution of Interfacial Intermetallic Phases at Near-Eutectic 50In-50Sn/Cu Interfaces. J. Electron. Mater. 49, 1512–1517 (2020). https://doi.org/10.1007/s11664-019-07838-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07838-8

Keywords

Navigation