Skip to main content
Log in

Synthesis of Zinc Oxide Nanoparticles Through Hybrid Machining Process and Their Application in Supercapacitors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An electrochemical discharge machining process to produce zinc oxide (ZnO) nanoparticles (NPs) under varying voltage and duty factors has been investigated. The morphological and optical characterizations of the generated ZnO NPs were carried out. It was observed that the production rate of NPs and their size increased with an increase in voltage. The ZnO NPs produced at 120 V showed the maximum production rate larger NPs. The field-effect scanning electron microscope images of the NPs revealed a nanorod-like structure, large conical shape rods and hexagonal wurtzite-like structures. The ZnO NPs generated at 120 V and 20% duty factor presented less agglomeration of NPs compared to other NPs generated by varying electrical parameters. The crystal size of the ZnO NPs were found to vary from 31.08 nm to 50.37 nm. The ZnO NPs were also tested for use in a supercapacitor electrode, and the results showed that the specific capacitance of the electrode was 708.75 F/g at a current density of 1 A/g and a retained capacity of 90.42%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Arya, P.K. Lehana, and B.S. Rana, J. Electron. Mater. 46, 4604 (2017).

    Article  CAS  Google Scholar 

  2. A.K. Radzimska and T. Jesionowski, Materials 7, 2833 (2014).

    Article  Google Scholar 

  3. S. Singhal, J. Kaur, T. Namgyal, and R. Sharma, Phys. B Condens. Matter 407, 1223 (2012).

    Article  CAS  Google Scholar 

  4. M. Arakha, R. Jyoti, N.S. Parth, M. Bibekanand, and J. Suman, Free Radic. Biol. Med. 42, 110 (2017).

    Google Scholar 

  5. J. Song, J. Bian, E. Zheng, X. Wang, W. Tian, and T. Miyasaka, Chem. Lett. 44, 610 (2015).

    Article  CAS  Google Scholar 

  6. J.L. Yang, S.J. An, W. Il Park, G.C. Yi, and W. Choi, Adv. Mater. 16, 1661 (2004).

    Article  CAS  Google Scholar 

  7. C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, Sensors 10, 2088 (2010).

    Article  CAS  Google Scholar 

  8. A. Tereshchenkoa, M. Bechelany, R. Viter, V. Khranovskyy, V. Smyntyna, N. Starodub, and R. Yakimova, Sens. Actuat. B. Chem. 229, 664 (2016).

    Article  Google Scholar 

  9. K. Zeng, J. Li, Z. Zhang, M. Yan, Y. Liao, X. Zhang, and C. Zhao, J. Mater. Chem. B 3, 5249 (2015).

    Article  CAS  Google Scholar 

  10. J.X. Wang, X.W. Sun, A. Wei, Y. Lei, X.P. Cai, C.M. Li, and Z.L. Dong, Appl. Phys. Lett. 88, 233106 (2006).

    Article  Google Scholar 

  11. S. Abdi and D. Dorranian, Opt. Laser Technol. 108, 372 (2018).

    Article  CAS  Google Scholar 

  12. V.S. Burakov, N.A. Savastenko, N.V. Tarasenko, and E.A. Nevar, J. Appl. Spectrosc. 75, 114 (2008).

    Article  CAS  Google Scholar 

  13. D. Ramimoghadam, S. Bagheri, and S.B.A. Hamid, J. Magn. Magn. Mater. 368, 207 (2014).

    Article  CAS  Google Scholar 

  14. O.A. Yildirim and C. Durucan, J. Alloys Compd. 506, 944 (2010).

    Article  CAS  Google Scholar 

  15. M. Guo, P. Diao, and S. Cai, Appl. Surf. Sci. 249, 71 (2005).

    Article  CAS  Google Scholar 

  16. L. Li, S. Pu, Y. Liu, L. Zhao, J. Ma, and J. Li, Adv. Powder Technol. 29, 2194 (2018).

    Article  CAS  Google Scholar 

  17. M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, and K. Sopian, J. Alloys. Compd. 550, 63 (2013).

    Article  CAS  Google Scholar 

  18. K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, Jpn. J. Appl. Phys., Part 2 Lett. 36, 1453 (1997).

    Article  Google Scholar 

  19. A.J. Cheng, Y. Tzeng, Y. Zhou, M. Park, T.H. Wu, C. Shannon, D. Wang, and W. Lee, Appl. Phys. Lett. 92, 92113 (2008).

    Article  Google Scholar 

  20. P.K. Singh, H. Bishwakarma, Shubham, and A.K. Das, J. Electron. Mater. 46, 5715 (2017).

    Article  CAS  Google Scholar 

  21. Y. Liu, X. Li, Y. Li, Z. Zhao, and F. Bai, Appl. Phys. A: Mater. Sci. Process. 122, 174 (2016).

    Article  Google Scholar 

  22. A. Ziashahabi, R. Poursalehi, and N. Naseri, Adv. Powder Technol. 29, 1246 (2018).

    Article  CAS  Google Scholar 

  23. C.J. Li, X. Cao, W.H. Li, B.W. Zhang, L.Q. Xiao, X. Cao, W.H. Li, B.W. Zhang, and L.Q. Xiao, J. Alloys. Compd. 773, 762 (2018).

    Article  Google Scholar 

  24. R.N. Yadav, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 233, 1037 (2019).

    Article  CAS  Google Scholar 

  25. N. Sabahi, M.R. Razfar, and M. Hajian, J. Mater. Process. Technol. 250, 190 (2017).

    Article  CAS  Google Scholar 

  26. S.S. Kumar, P. Venkateswarlu, V.R. Rao, and G.N. Rao, Int. Nano Lett. 1, 30 (2013).

    Article  Google Scholar 

  27. H.Y. Lu, S.Y. Chu, and S.S. Tan, J. Cryst. Growth 269, 385 (2004).

    Article  CAS  Google Scholar 

  28. H. Sarma and K.C. Sarma, Int. J. Sci. Res. Publ. 4, 1 (2014).

    Google Scholar 

  29. P.K. Gupta, J.P. Bhamu, C.S. Rajoria, N.K. Lautre, and V. Agarwal, in MATEC Web Conf. vol 77 (2016).

  30. B. Jiang, S. Lan, K. Wilt, and J. Ni, Int. J. Mach. Tool. Manuf. 90, 8 (2015).

    Article  Google Scholar 

  31. C.P. Cheng, K.L. Wu, C.C. Mai, C.K. Yang, Y.S. Hsu, and B.H. Yan, Int. J. Mach. Tools Manuf. 50, 689 (2010).

    Article  Google Scholar 

  32. A. Sarić, S. Goran, D. Goran, and G. Marijan, J. Alloys Compd. 652, 99 (2015).

    Article  Google Scholar 

  33. R. Shama, A. Mumtaz, and S.K. Hasanain, J. Nanoparticle Res. 6, 2497 (2011).

    Google Scholar 

  34. S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, and S. Maensiri, Mater. Chem. Phys. 115, 423 (2009).

    Article  CAS  Google Scholar 

  35. L.C. Nehru and C. Sanjeeviraja, J. Adv. Ceram. 3, 171 (2014).

    Article  CAS  Google Scholar 

  36. M.M. Hassan, W. Khan, A. Azam, and A.H. Naqvi, J. Lumin. 145, 160 (2014).

    Article  CAS  Google Scholar 

  37. M.J. Chithra, M. Sathya, and K. Pushpanathan, Acta Metall. Sin.-Engl. 28, 394 (2015).

    Article  Google Scholar 

  38. A. De Adhikari, R. Oraon, S.K. Tiwari, N.K. Jena, J.H. Lee, N.H. Kim, and G.C. Nayak, Chem.—Asian J. 12, 900 (2017).

    Article  Google Scholar 

  39. P.K. Singh, A.K. Das, G. Hatui, and G.C. Nayak, Mater. Chem. Phys. 198, 16 (2017).

    Article  CAS  Google Scholar 

  40. R.S. Ray, B. Sarma, and M. Misra, Mater. Lett. 155, 102 (2015).

    Article  CAS  Google Scholar 

  41. X.Y. Liu, H. Chen, G. Li, J.H. Peng, and Y.X. Zhang, Ceram. Int. 42, 9227 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Kumar Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bishwakarma, H., Das, A.K. Synthesis of Zinc Oxide Nanoparticles Through Hybrid Machining Process and Their Application in Supercapacitors. J. Electron. Mater. 49, 1541–1549 (2020). https://doi.org/10.1007/s11664-019-07835-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07835-x

Keywords

Navigation