Skip to main content
Log in

Structural, Optical and Magnetic Properties of \(\alpha \)-\({\text {Fe}}_{2}{\text {O}}_{3}\)-\({\text {SiO}}_{2}\) and \({\text {Dy}}_{2}{\text {O}}_{3}\)-\({\text {SiO}}_{2}\) Composites Produced by a Facile Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We prepared \({\text {SiO}}_{2}\), \({\text {Fe}}_{2}{\text {O}}_{3}\)-\({\text {SiO}}_{2}\), and \({\text {Dy}}_{2}{\text {O}}_{3}\)-\({\text {SiO}}_{2}\) composites by an enhanced method and reported the result of their structural, optical and magnetic properties. In the x-ray diffraction results of the \({\text {Fe}}_{2}{\text {O}}_{3}\)-\({\text {SiO}}_{2}\), \({\text {Fe}}_{2}{\text {O}}_{3}\) and the \({\text {SiO}}_{2}\) it is evident that these composites are crystallized in rhombohedral and trigonal structures, respectively. In the\({\text {Dy}}_{2}{\text {O}}_{3}\)-\({\text {SiO}}_{2}\) composite, \({\text {SiO}}_{2}\) transforms into a trigonal structure with the addition of Dy. The absorption bands belong to \({\text {Fe}}_{2}{\text {O}}_{3}\), and \({\text {Dy}}_{2}{\text {O}}_{3}\) were obtained using the Fourier transform infrared spectra. In ultraviolet–visible spectra, the photocatalytic properties of \({\text {Fe}}_{2}{\text {O}}_{3}\)-\({\text {SiO}}_{2}\) and \({\text {Dy}}_{2}{\text {O}}_{3}\)-\({\text {SiO}}_{2}\) were determined as a function of time at room temperature. Maximum transmittance change at 800 nm was 75% and 40% for composites \({\text {Fe}}_{2}{\text {O}}_{3}\)-\({\text {SiO}}_{2}\), and \({\text {Dy}}_{2}{\text {O}}_{3}\)-\({\text {SiO}}_{2}\), respectively. The photocatalytic property of \({\text {Dy}}_{2}{\text {O}}_{3}\)-\({\text {SiO}}_{2}\) composite increases gradually from short to long in the wavelength region where it exhibits a maximum value in the visible region. In magnetic measurements, a weak ferromagnetic behavior was observed in the \({\text {Fe}}_{2}{\text {O}}_{3}\)-\({\text {SiO}}_{2}\), while \({\text {Dy}}_{2}{\text {O}}_{3}\)-\({\text {SiO}}_{2}\) exhibited paramagnetic behavior as expected. The saturation and coercivity values for \({\text {Fe}}_{2}{\text {O}}_{3}\)-\({\text {SiO}}_{2}\) were found to be 0.15 \(\hbox {Am}^2\hbox {kg}^{-1}\) and 40 mT, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Soltan, H. Jafari, S. Afshar, and O. Zabihi, Water Sci. Technol. 77, 1689 (2016). https://doi.org/10.2166/wst.2016.343.

    Article  CAS  Google Scholar 

  2. S.C. Feifel and F. Lisdat, J. Nanobiotechnol. 9, 59 (2011). https://doi.org/10.1186/1477-3155-9-59.

    Article  CAS  Google Scholar 

  3. S.H. Huang and R.S. Juang, J. Nanopart. Res. 13, 4411 (2011). https://doi.org/10.1007/s11051-011-0551-4.

    Article  Google Scholar 

  4. C. Pacurariu, E.A. Taculescu, R. Ianos, O. Marinica, C.V. Mihali, and V. Socoliuc, Ceram. Int. 41, 1079 (2015). https://doi.org/10.1016/j.ceramint.2014.09.031.

    Article  CAS  Google Scholar 

  5. E. Esmaeili, M. Salavati-Niasari, F. Mohandes, F. Davar, and H. Seyghalkar, Chem. Eng. J. 170, 278 (2011). https://doi.org/10.1016/j.cej.2011.03.010.

    Article  CAS  Google Scholar 

  6. U. Schwertmann and R.M. Cornel, The Iron Oxides in the Laboratory, Preparation and Characterization (Weinheim: VCH Publishers, 1996).

    Google Scholar 

  7. M. Mishra and D.M. Chun, Appl. Catal. A: Gen. 498, 126 (2015). https://doi.org/10.1016/j.apcata.2015.03.023.

    Article  CAS  Google Scholar 

  8. M. Salavati-Niasari, F. Davar, and M. Mazaheri, J. Alloys Compd. 470, 502 (2009). https://doi.org/10.1016/j.jallcom.2008.03.048.

    Article  CAS  Google Scholar 

  9. M. Salavati-Niasari, P. Salemi, and F. Davar, J. Mol. Catal. A: Chem. 238, 215 (2005). https://doi.org/10.1016/j.molcata.2005.05.026.

    Article  CAS  Google Scholar 

  10. F. Beshkar and M. Salavati-Niasari, J. Nanostruct. 5, 17 (2015). https://doi.org/10.7508/jns.2015.01.003.

    Article  Google Scholar 

  11. F. Motahari, M.R. Mozdianfard, F. Soofivand, and M. Salavati-Niasari, RSC Adv. 4, 27654 (2014). https://doi.org/10.1039/C4RA02697G.

    Article  CAS  Google Scholar 

  12. F. Soofivand, F. Mohandes, and M. Salavati-Niasari, Mater. Res. Bull. 48, 2084 (2013). https://doi.org/10.1016/j.materresbull.2013.02.025.

    Article  CAS  Google Scholar 

  13. M. Ranjbar, M. Salavati-Niasari, S.M. Hosseinpour-Mashkani, and K. Venkateswara-Rao, J. Inorg. Organomet. Polym Mater. 22, 1122 (2012). https://doi.org/10.1007/s10904-012-9704-x.

    Article  CAS  Google Scholar 

  14. O. Amiri, M. Salavati-Niasari, S.M. Hosseinpour-Mashkani, A. Rafiei, and S. Bagheri, Mater. Sci. Semicond. Process. 27, 261 (2014). https://doi.org/10.1016/j.mssp.2014.06.020.

    Article  CAS  Google Scholar 

  15. H. Zeynali, S. Behnam Mousavi, and S.M. Hosseinpour-Mashkani, Mater. Lett. 144, 65 (2015). https://doi.org/10.1016/j.matlet.2015.01.023.

    Article  CAS  Google Scholar 

  16. N. Mir, M. Bahrami, E. Safari, and S.M. Hosseinpour-Mashkani, J. Cluster Sci. 26, 1103 (2015). https://doi.org/10.1007/s10876-014-0800-7.

    Article  CAS  Google Scholar 

  17. A. Sobhani-Nasab, Z. Zahraei, M. Akbari, M. Maddahfar, and S.M. Hosseinpour-Mashkani, J. Mol. Struct. 1139, 430 (2017). https://doi.org/10.1016/j.molstruc.2017.03.069.

    Article  CAS  Google Scholar 

  18. S. Zinatloo-Ajabshir, M.S. Morassaei, and M. Salavati-Niasari, J. Colloid Interface Sci. 497, 298 (2017). https://doi.org/10.1016/j.jcis.2017.03.031.

    Article  CAS  Google Scholar 

  19. M. Mahdiani, F. Soofivand, F. Ansari, and M. Salavati-Niasari, J. Clean. Prod. 176, 1185 (2018). https://doi.org/10.1016/j.jclepro.2017.11.177.

    Article  CAS  Google Scholar 

  20. J. Balbuena, M. Cruz-Yusta, A. Pastor, and L. Snchez, J. Alloys Compd. 735, 1553 (2018). https://doi.org/10.1016/j.jallcom.2017.11.259.

    Article  CAS  Google Scholar 

  21. V.M. Bogatyrev, V.M. Gunko, M.V. Galaburda, M.V. Borysenko, V.A. Pokrovskiy, O.I. Oranska, E.V. Polshin, O.M. Korduban, R. Leboda, and J. Skubiszewska-Ziba, J. Colloid Interface Sci. 338, 376 (2009). https://doi.org/10.1016/j.jcis.2009.06.044.

    Article  CAS  Google Scholar 

  22. Q. Sun, W. Leng, Z. Li, and Y. Xu, J. Hazard. Mater. 229230, 224232 (2012). https://doi.org/10.1016/j.jhazmat.2012.05.098.

    Article  CAS  Google Scholar 

  23. X. Wang, C. Liu, X. Li, F. Li, and S. Zhou, J. Hazard. Mater. 153, 426433 (2008). https://doi.org/10.1016/j.jhazmat.2007.08.072.

    Article  CAS  Google Scholar 

  24. Y.B. Saddeek, K.H.S. Shaaban, R. Elsaman, A. El-Taher, and T.Z. Amer, Radiat. Phys. Chem. 150, 182 (2018). https://doi.org/10.1016/j.radphyschem.2018.04.028.

    Article  CAS  Google Scholar 

  25. M.S. Rao, B. Sanyal, K. Bhargavi, R. Vijay, I.V. Kityk, and N. Veeraiah, J. Mol. Struct. 1073, 174 (2014). https://doi.org/10.1016/j.molstruc.2014.04.075.

    Article  CAS  Google Scholar 

  26. H. Huang, Y. Ou, S. Xu, G. Fang, M. Li, and X.Z. Zhao, Appl. Surf. Sci. 254, 2013 (2008). https://doi.org/10.1016/j.apsusc.2007.08.041.

    Article  CAS  Google Scholar 

  27. G.A.S. Josephine and A. Sivasamy, Environ. Sci. Technol. Lett. 1, 172 (2014). https://doi.org/10.1021/ez4002032.

    Article  CAS  Google Scholar 

  28. G.A.S. Josephine and A. Sivasamy, Appl. Catal. B: Environ. 150–151, 288 (2014). https://doi.org/10.1016/j.apcatb.2013.11.004.

    Article  CAS  Google Scholar 

  29. A. Kumar, N. Yadav, M. Bhatt, N.K. Mishra, P. Chaudhary, and R. Singh, Res. J. Chem. Sci. 5, 98 (2015).

    Google Scholar 

  30. J.D. Mackenzie, J. Non-Cryst. Solids 100, 162 (1988).

    Article  CAS  Google Scholar 

  31. A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni, and R. Rizzi, J. Appl. Crystallogr. 48, 598 (2015). https://doi.org/10.1107/S1600576715002319.

    Article  CAS  Google Scholar 

  32. S. Vasanthavel, B. Derby, and S. Kannan, Inorg. Chem. 56, 1273 (2017). https://doi.org/10.1021/acs.inorgchem.6b02361.

    Article  CAS  Google Scholar 

  33. S. Moshtaghi, S. Zinatloo-Ajabshir, and M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 27, 425 (2016). https://doi.org/10.1007/s10854-015-3770-0.

    Article  CAS  Google Scholar 

  34. A. Vazquez, T. Lopez, R. Gomez, Bokhimi, A. Morales, and O. Novaro, J. Solid State Chem. 128, 161 (1997). https://doi.org/10.1006/jssc.1996.7135.

    Article  CAS  Google Scholar 

  35. A. Aronne, S. Esposito, and P. Pernice, Mater. Chem. Phys. 51, 163 (1997). https://doi.org/10.1016/S0254-0584(97)80287-8.

    Article  CAS  Google Scholar 

  36. W.L. Konijnendijk, Glastechn. Ber. 48, 216 (1975).

    CAS  Google Scholar 

  37. W.L. Konijnendijk and J.M. Stevels, J. Non-Cryst. Solids 21, 447 (1976). https://doi.org/10.1016/0022-3093(76)90033-8.

    Article  CAS  Google Scholar 

  38. Y. Tsunawaki, N. Iwamoto, T. Hattori, and A. Mitsuishi, J. Non-Cryst. Solids 44, 369 (1981). https://doi.org/10.1016/0022-3093(81)90039-9.

    Article  CAS  Google Scholar 

  39. S. Maensiri, C. Masingboon, B. Boonchom, and S. Seraphin, Scripta Mater. 56, 797 (2007). https://doi.org/10.1016/j.scriptamat.2006.09.033.

    Article  CAS  Google Scholar 

  40. S. Zhang, Nanostructured Thin Films and Coatings: Functional Properties (Routledge: Taylor and Francis, 2010).

    Book  Google Scholar 

  41. Y.B. Saddeek, K.H.S. Shaaban, R. Elsaman, A. El-Taher, and T.Z. Am, Proc. Indian Acad. Sci. 12A, 93 (1940).

    Google Scholar 

  42. V.C. Pierre and M.J. Allen, Contrast Agents for MRI. The Royal Society of Chemistry, London. (2018). https://doi.org/10.1039/9781788010146.

    Article  Google Scholar 

  43. M. Arshad, A. Azam, A.S. Ahmed, S. Mollah, and A.H. Naqvi, J. Alloys Compd 509, 8378 (2011). https://doi.org/10.1016/j.jallcom.2011.05.047.

    Article  CAS  Google Scholar 

  44. S. Muthu Kumaran and R. Gopalakrishnan, J. Sol-Gel Sci. Technol. 62, 193 (2012). https://doi.org/10.1007/s10971-012-2708-8.

    Article  CAS  Google Scholar 

  45. J. Pisarska, J. Phys.: Condens. Matter 21, 285101 (2009). https://doi.org/10.1088/0953-8984/21/28/285101.

    Article  CAS  Google Scholar 

  46. K. Kadono, N. Itakura, T. Akai, M. Yamashita, and T. Yazawa, J. Phys.: Condens. Matter 22, 045901 (2010). https://doi.org/10.1088/0953-8984/22/4/045901.

    Article  CAS  Google Scholar 

  47. R. Kant, D. Kumar, and V. Dutta, RSC Adv. 5, 52945 (2015). https://doi.org/10.1039/C5RA06261F.

    Article  CAS  Google Scholar 

  48. T.P. Raming, A.J.A. Winnubst, C.M. van Kats, and A.P. Philipse, J. Colloid Interface Sci. 249, 346 (2002). https://doi.org/10.1006/jcis.2001.8194.

    Article  CAS  Google Scholar 

  49. D.X. Chen, V. Skumryev, and B. Bozzo, Rev. Sci. Instrum. 82, 045112 (2011). https://doi.org/10.1063/1.3581224.

    Article  CAS  Google Scholar 

  50. D.J. Flood, Phys. Lett. A 49, 59 (1974). https://doi.org/10.1016/0375-9601(74)90668-9.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Asst. Prof. Dr. C. Gökhan Ünlü for assistances of scanning electron microscopy measurement. Also, we thank Mr. Kağan Şarlar for the magnetic measurements of the composites. This work was supported by the Commission of Scientific Research Projects of Uludag University [Project Number OUAP(F)-2018/4].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Kendir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kendir, E., Tekgül, A., Küçük, İ. et al. Structural, Optical and Magnetic Properties of \(\alpha \)-\({\text {Fe}}_{2}{\text {O}}_{3}\)-\({\text {SiO}}_{2}\) and \({\text {Dy}}_{2}{\text {O}}_{3}\)-\({\text {SiO}}_{2}\) Composites Produced by a Facile Method. J. Electron. Mater. 49, 798–806 (2020). https://doi.org/10.1007/s11664-019-07718-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07718-1

Keywords

Navigation