Skip to main content
Log in

Effect of Silanization on the Magnetic and Microwave Absorption Properties of SrFe12O19 Nanostructure Particles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Strontium ferrite nanostructure particles (SrFe12O19), which have a ferrimagnetic nature, were synthesized by a co-precipitation process of chloride salts using a sodium hydroxide solution. The resulting precursors were heat-treated in a furnace at 1100°C for 4 h. After cooling in the furnace, the nanostructure particles were silanized using 3-methacryloxypropyltrimethoxy silane molecules. After applying the silane pretreatment to the surface of the nanoparticles, we studied the effects of the most influential silanizing parameters, including the silane concentration and hydrolyzing time, on the magnetic and microwave absorption properties of the samples. The hysteresis loops showed an optimum saturation magnetization of 0.065T for 1 h hydrolyzing time at 1.25 wt.% silane concentration; however, no change was detected in the coercivity by varying the two factors. The powders with optimum magnetic properties were used to manufacture the samples in order to study the microwave absorption properties. Employing silanized nanostructures resulted in a significant increase in the reflection loss (at the resonance frequency) from − 16 dB up to − 72 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.E. Jacobo, P.G. Bercoff, C.A. Herme, and L.A. Vives, Mater. Chem. Phys. 157, 124 (2015).

    Article  Google Scholar 

  2. R. Sharma, V. Singh, R.K. Kotnala, and R.P. Tandon, Mater. Chem. Phys. 160, 447 (2015).

    Article  Google Scholar 

  3. Z. Durmus, H. Kavas, A. Durmus, and B. Aktaş, Mater. Chem. Phys. 163, 439 (2015).

    Article  Google Scholar 

  4. P. Xu, X. Han, H. Zhao, Z. Liang, and J. Wang, Mater. Lett. 62, 1305 (2008).

    Article  Google Scholar 

  5. A.R. Farhadizadeh, S.A. SeyyedEbrahimi, and S.M. Masoudpanah, J. Magn. Magn. Mater. 382, 233 (2015).

    Article  Google Scholar 

  6. N.A. Sapoletova, S.E. Kushnir, Y.H. Li, S.Y. An, Jw Seo, and K. HeonHur, J. Magn. Magn. Mater. 389, 101 (2015).

    Article  Google Scholar 

  7. A. Singh, V. Singh, and K.K. Bamzai, Mater. Chem. Phys. 155, 92 (2015).

    Article  Google Scholar 

  8. G. Vaisman, E.O. Kamenetskii, and R. Shavit, J. Phys. D Appl. Phys. 48, 115003 (2015).

    Article  Google Scholar 

  9. M. Gama, C. Rezende, and C. Dantas, J. Magn. Magn. Mater. 19, 9 (2011).

    Google Scholar 

  10. L. Chen, Y. Duan, L. Liu, J. Guo, and S. Liu, Mater. Des. 21, 2 (2011).

    Google Scholar 

  11. F. Qin and C. Brosseay, J. Appl. Phys. 14, 19 (2012).

    Google Scholar 

  12. X.C. Tong, Advanced Materials and Design for Electromagnetic Interference Shielding (Boca Raton: CRC Press, 2009).

    Google Scholar 

  13. P. Liu, Z. Yao, and J. Zhou, J. RSC Adv. 5, 93739–93748 (2015).

    Article  Google Scholar 

  14. Y.J. Wan, L.X. Gong, L.C. Tang, L.B. Wu, and J.X. Jiang, Compos. Part A Appl. Sci. Manuf 64, 79 (2014).

    Article  Google Scholar 

  15. H. Chen, J. Zheng, L. Qiao, Y. Ying, L. Jiang, and S.L. Che, Adv. Powder Technol. 26, 618 (2015).

    Article  Google Scholar 

  16. C.Y. Lee, J.H. Bae, T.Y. Kim, S.H. Chang, and S.Y. Kim, Compos. Part A Appl. Sci. Manuf. 75, 11 (2015).

    Article  Google Scholar 

  17. J. Comyn, Handb. Adhes. Sealants 2, 1 (2006).

    Article  Google Scholar 

  18. A.H. Taghvaei, H. Shokrollahi, A. Ebrahimi, and K. Janghorban, Mater. Chem. Phys. 116, 247 (2009).

    Article  Google Scholar 

  19. C.R. Vistas, A.C.P. Águas, and G.N.M. Ferreira, Appl. Surf. Sci. 286, 314 (2013).

    Article  Google Scholar 

  20. B.D. Benito, F. Velasco, and M. Pantoja, Prog. Org. Coat. 70, 287 (2011).

    Article  Google Scholar 

  21. J. Renato, C. Queiroz, P. Benetti, M. Özcan, L. Fernando, C. Oliveira, A.D. Bona, F.E. Takahashi, and M.A. Bottino, Dent. Mater. 28, 189 (2012).

    Article  Google Scholar 

  22. M.L. Abel, R.D. Allington, R.P. Digby, N. Porritt, S.J. Shaw, and J.F. Watts, Int. J. Adhes. Adhes. 26, 2 (2006).

    Article  Google Scholar 

  23. S. Tyagi, V. Agarwala, and T. Shami, J. Elec. Mater. 40, 2004 (2011).

    Article  Google Scholar 

  24. B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction, 3rd ed. (Upper Saddle River: Prentice-Hall Inc, 2001).

    Google Scholar 

  25. M. Yamaura, R.L. Camilo, L.C. Sampaio, M.A. Macêdo, M. Nakamura, and H.E. Toma, J. Magn. Magn. Mater. 279, 210 (2004).

    Article  Google Scholar 

  26. W.S. Kim and J.J. Lee, J. Adhes. Sci. Technol. 21, 125 (2007).

    Article  Google Scholar 

  27. M. Mohseni, M. Mirabedini, M. Hashemi, and G.E. Thompson, Prog. Org. Coat. 57, 307 (2006).

    Article  Google Scholar 

  28. B. Chico, D. Fuente, M. Pe´rez, and M. Morcillo, J. Coat. Technol. Res. 9, 3 (2012).

    Article  Google Scholar 

  29. J.P. Matinlinna, M. Ozcan, L.V.J. Lassila, and P.K. Vallittu, Dent. Mater. 20, 804 (2004).

    Article  Google Scholar 

  30. E.M. Petrie, Handbook of Adhesives and Sealants (New York: McGraw-Hill, 2000).

    Google Scholar 

  31. P. Wagner, R. Ray, K. Hart, and W. Bradley, Mater. Eng. 20, 38 (1987).

  32. W.D. Bascom, ASM Engineered Materials Handbook (Russell Township: ASM International, 1990).

    Google Scholar 

  33. R.C.O. Handley, A Wiley Intersci. Publ. 11, 41 (2000).

    Google Scholar 

  34. R. Ramprasad, P. Zurcher, M. Petras, and M. Miller, J. Appl. Phys. 2, 14 (2004).

    Google Scholar 

  35. Z. Liu, D. Zeng, R. Ramanujan, X. Zhong, and H. Davies, Am. Inst. Phys. 12, 51 (2009).

    Google Scholar 

  36. E. Hosseinkhani, M. Mehdipour, and H. Shokrollahi, J. Elec. Mater. 3, 18 (2013).

    Google Scholar 

  37. Z. Ma, Y. Zhang, Ch Tao, J. Yuan, Q. Liu, and J. Wang, Phys. B 14, 25 (2011).

    Google Scholar 

  38. R. Soohoo, Theory and Application of Ferrites, Vol. 2 (Upper Saddle River: Prentice-Hall, 1960), p. 41.

    Google Scholar 

  39. S. Vonsovlii, eds., Ferromagnetic Resonance (Oxford: Pergamon Press Ltd, 1966).

    Google Scholar 

  40. M. Hurben, D. Franklin, and C. Patton, Am. Inst. Phys. 16, 23 (1997).

    Google Scholar 

  41. A. Gurevich and G. Melkov, Magnetization Oscillation and Waves (Boca Raton: CRC Press Inc, 1996).

    Google Scholar 

  42. M. Hurben and C. Patton, Am. Inst. Phys. 1, 5 (1998).

    Google Scholar 

  43. R. Ramprasad, P. Zurcher, M. Petras, and M. Miller, Am. Inst. Phys. 11, 14 (2004).

    Google Scholar 

  44. M. Mehdipour and H. Shokrollahi, J. Appl. Phys. 19, 12 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdad Fathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdipour, M., Fathi, M., Ariae, S. et al. Effect of Silanization on the Magnetic and Microwave Absorption Properties of SrFe12O19 Nanostructure Particles. J. Electron. Mater. 48, 5209–5217 (2019). https://doi.org/10.1007/s11664-019-07317-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07317-0

Keywords

Navigation