Skip to main content
Log in

Barrier Height Modification of n-InP Using a Silver Nanoparticles Loaded Graphene Oxide as an Interlayer in a Wide Temperature Range

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Mercaptoundecanoic acid capped-Ag nanoparticles (MUA-AgNPs) assembled on graphene oxide (GO), namely MUA-AgNPs-GO nanocomposite, was used for enhancing current–voltage (IV) activity and stability of n-lnP based heterojunction devices. The structural, morphological and optical properties of the MUA-AgNPs-GO nanocomposite were examined by Raman spectroscopy, UV–Vis spectroscopy, transmission electron microscopy and scanning electron microscopy measurements. Besides, the Ag/MUA-AgNPs-GO/n-InP/Au-Ge heterojunction was fabricated, and working performance of the heterojunction was investigated in the temperature range of 80–320 K by steps of 20 K. The heterojunction created by the MUA-AgNPs-GO nanocomposite showed improved working performance such as better IV characteristics, great stability and better rectifying ratio than that of our reference junction. The ideality factor and barrier height values of the junction formed with MUA-AgNPs-GO layer were found to be 1.07 eV and 0.630 eV, respectively. The experimental value of the Richardson constant was determined to be 3.82 A/cm2 K2 in the 80–160 K temperature range and to be 6.55 A/cm2 K2 in the 160–320 K temperature range. The results showed that the MUA-AgNPs-GO nanocomposite is a favorable candidate to provide modification of barrier height and to improve characteristic parameters for applications of the heterojunction devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.B. Freund and S. Suresh, Thin Film Materials (New York: Cambridge University Press, 2003).

    Google Scholar 

  2. A. Baltakesmez, A. Yenisoy, S. Tüzemen, and E. Gür, Mater. Sci. Semicond. Process. 74, 249 (2018).

    Article  Google Scholar 

  3. S. Akın, E. Erol, and S. Sönmezoğlu, Electrochim. Acta 225, 243 (2017).

    Article  Google Scholar 

  4. A. Kösemen, Z.A. Kösemen, B. Canimkubey, M. Erkovan, F. Başarır, S.E. San, O. örnek, and A.V. Tunç, Sol. Energy 132, 511 (2016).

    Article  Google Scholar 

  5. G. Turgut and E. Sönmez, Superlattices Microstruct. 69, 175 (2014).

    Article  Google Scholar 

  6. F.N. Dultsev, L.L. Vasilieva, S.M. Maroshina, and L.D. Pokrovsky, Thin Solid Films 510, 255 (2006).

    Article  Google Scholar 

  7. H. Hirashima, I. Michihisa, and I. Yoshida, J. Non-Cryst. Solids 86, 327 (1986).

    Article  Google Scholar 

  8. G.V. Baryshevsky, A.P. Ulyanenkov, and I.D. Feranchuk, Parametric X-ray Radiation in Crystals (New York: Springer Tracts in Modern Physics, 2005).

    Book  Google Scholar 

  9. A.A.A. Darwish, S.A. Issa, T.A. Hamdalla, and M.M. El-Nahass, Opt. Quantum Electron. 49, 1 (2017).

    Article  Google Scholar 

  10. M. Ali Yıldırım, S.T. Yıldırım, and A. Ates, J. Alloys Compd. 701, 37 (2017).

    Article  Google Scholar 

  11. A. Reyhani, A. Gholizadeh, V. Vahedi, and M.R. Khanlary, Opt. Mater. 75, 236 (2018).

    Article  Google Scholar 

  12. C. Claeys and E. Simoen, Radiation Effects in Advanced Semiconductor Materials and Devices (Berlin, Heidelberg, New York: Springer-Verlag, 2002).

    Book  Google Scholar 

  13. E.Ö. Zayim and N.D. Baydogan, Energy Mater. Sol. Cells 90, 402 (2006).

    Article  Google Scholar 

  14. A.M. Manzini, M.A. Alurralde, G. Gimenez, and V. Luca, J. Nucl. Mater. 482, 175 (2016).

    Article  Google Scholar 

  15. N. Baydogan, Mater. Sci. Eng. 107, 70 (2004).

    Article  Google Scholar 

  16. K.E. Sickafus, E.A. Kotomin, and B.P. Uberuaga, Radiation Effects in Solids (Italy: Proceedings of the NATO Advanced Study Institute on Radiation Effects in Solids Erice, 2004)

  17. S. Sarangi, J. Phys. D: Appl. Phys. 49, 355 (2016).

    Article  Google Scholar 

  18. X. Wang and Y. Zhang, Mater. Lett. 188, 257 (2017).

    Article  Google Scholar 

  19. M. Oliveira, D. Ugarte, D. Zanchet, and A. Zarbin, J. Colloid Interf. Sci. 292, 429 (2005).

    Article  Google Scholar 

  20. A. Jafarizad, A. Aghanejad, M. Sevim, Ö. Metin, J. Barar, Y. Omidi, and D. Ekinci, Chem. Sel. 2, 6663 (2017).

    Google Scholar 

  21. K.N. Kudin, B. Özbaş, H.C. Schniepp, R.K. Prudhomme, I.A. Aksay, and R. Car, Nano Lett. 8, 36 (2008).

    Article  Google Scholar 

  22. J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li, and M. Ye, Chem. Mater. 21, 3514 (2009).

    Article  Google Scholar 

  23. L. Tao, Y. Lou, Y. Zhao, M. Hao, Y. Yang, Y. Xiao, Y.H. Tsang, and J. Li, J. Mater. Sci. 53, 573 (2018).

    Article  Google Scholar 

  24. Ö. Metin, H. Can, K. Şendil, and M.S. Gültekin, J. Colloid Interface Sci. 498, 378 (2017).

    Article  Google Scholar 

  25. S.K. Cusshing, ACS Nano 8, 1002 (2014).

    Article  Google Scholar 

  26. D. Hernandez-Sanchez, G. Villabona-Leal, I. Saucedo-Orozco, V. Bracamonte, E. Perez, C. Bittencourt, and M. Quintan, Phys. Chem. Chem. Phys. 20, 1685 (2018).

    Article  Google Scholar 

  27. E.H. Rhoderick and R.H. Williams, Metal-Semiconductor Contacts (Oxford: University Press, 1988).

    Google Scholar 

  28. A.D. Bartolomeo, Phys. Rep. 606, 1 (2016).

    Article  Google Scholar 

  29. A. Levstek and S. Amon, J. Appl. Phys. 94, 7604 (2003).

    Article  Google Scholar 

  30. A. Behnam, E. Pop, G. Bosman, and A. Ural, J. Appl. Phys. 118, 114307 (2015).

    Article  Google Scholar 

  31. H. Umezawa, S. Shikata, and T. Funaki, Jpn. J. Appl. Phys. 53, 570 (2014).

    Google Scholar 

  32. T. Çakıcı, B. Güzeldir, and M. Sağlam, J. Alloys Compd. 646, 954 (2015).

    Article  Google Scholar 

  33. S.M. Sze, Physics of Semiconductor Device (New York: Wiley, 1981).

    Google Scholar 

  34. A. Tataroğlu, C. Ahmedova, G. Barim, A.G. Al-Sehemi, A. Karabulut, A.A. Al-Ghamdi, W.A. Farooq, and F. Yakuphanoglu, J. Mater. Sci. Mater. Electron. 15, 12561 (2018).

    Article  Google Scholar 

  35. B. Guzeldir, M. Sağlam, and A. Ateş, J. Alloys Compd. 506, 388 (2010).

    Article  Google Scholar 

  36. I. Taşçıoğlu, U. Aydemir, ş. Altındal, B. Kınacı, and S. Özçelik, J. Appl. Phys. 109, 054502 (2011).

    Article  Google Scholar 

  37. A. Kocyigit, I. Orak, Z. Çaldıran, and A. Türüt, J. Mater. Sci. Mater. Electron. 28, 17177 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Güzeldir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltakesmez, A., Taşer, A., Kudaş, Z. et al. Barrier Height Modification of n-InP Using a Silver Nanoparticles Loaded Graphene Oxide as an Interlayer in a Wide Temperature Range. J. Electron. Mater. 48, 3169–3182 (2019). https://doi.org/10.1007/s11664-019-07088-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07088-8

Keywords

Navigation