Skip to main content
Log in

Incorporation of Carbon in Free-Standing HVPE-Grown GaN Substrates

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Carbon doping is a viable approach for compensating the unintentional donors in GaN and achieving semi-insulating substrates necessary for high-frequency, high-power devices. In this work, bulk material properties and point defects are studied in mm-thick free-standing carbon-doped GaN to understand the efficacy of the carbon dopant. Temperature-dependent Hall measurements reveal high resistivity and low carrier concentrations at temperatures as high as 560°C in a 6 × 1017 cm−3 C-doped sample, and electron paramagnetic resonance (EPR) indicates that carbon acts as the compensating defect. Photoluminescence, in agreement with photo-EPR, suggests that the compensating center is CN; however, additional defects, which possibly limit compensation, are formed at carbon concentrations greater than 5 × 1017 cm−3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Tomiya, T. Hino, S. Goto, M. Takeya, and M. Ikeda, IEEE J. Sel. Top. Quantum Electron. 10, 1277 (2004).

    Article  Google Scholar 

  2. I.C. Kizilyalli, A.P. Edwards, O. Aktas, T. Prunty, and D. Bour, IEEE Trans. Electron Devices 62, 414 (2015).

    Article  Google Scholar 

  3. M. Bockowski, M. Iwinska, M. Amilusik, B. Lucznik, M. Fijalkowski, E. Litwin-Staszewska, R. Piotrzkowski, and T. Sochacki, J. Cryst. Growth 499, 1 (2018).

    Article  Google Scholar 

  4. J.A. Freitas, J.C. Culbertson, N.A. Mahadik, T. Sochacki, M. Iwinska, and M.S. Bockowski, J. Cryst. Growth 456, 113 (2016).

    Article  Google Scholar 

  5. H. Teisseyre, M. Bockowski, I. Grzegory, A. Kozanecki, B. Damilano, Y. Zhydachevskii, M. Kunzer, K. Holc, and U.T. Schwarz, Appl. Phys. Lett. 103, 011107 (2013).

    Article  Google Scholar 

  6. S. Heikman, S. Keller, S.P. DenBaars, and U.K. Mishra, Appl. Phys. Lett. 81, 439 (2002).

    Article  Google Scholar 

  7. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, V.I. Vdovin, A.V. Markov, A.A. Shlensky, E. Prebble, D. Hanser, J.M. Zavada, and S.J. Pearton, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 25, 686 (2007).

    Article  Google Scholar 

  8. J.L. Lyons, A. Janotti, and C.G. Van de Walle, Phys. Rev. B 89, 035204 (2014).

    Article  Google Scholar 

  9. M.J. Uren, M. Caesar, S. Karboyan, P. Moens, P. Vanmeerbeek, and M. Kuball, IEEE Electron Device Lett. 36, 826 (2015).

    Article  Google Scholar 

  10. M.J. Uren, M. Cäsar, M.A. Gajda, and M. Kuball, Appl. Phys. Lett. 104, 263505 (2014).

    Article  Google Scholar 

  11. E. Bahat-Treidel, F. Brunner, O. Hilt, E. Cho, J. Wurfl, and G. Trankle, IEEE Trans. Electron Devices 57, 3050 (2010).

    Article  Google Scholar 

  12. H. Tang, Z.Q. Fang, S. Rolfe, J.A. Bardwell, and S. Raymond, J. Appl. Phys. 107, 103701 (2010).

    Article  Google Scholar 

  13. D.O. Demchenko, I.C. Diallo, and M.A. Reshchikov, Phys. Rev. Lett. 110, 087404 (2013).

    Article  Google Scholar 

  14. A.F. Wright, J. Appl. Phys. 92, 2575 (2002).

    Article  Google Scholar 

  15. P.B. Klein and S.C. Binari, J. Phys. Condens. Matter 15, R1641 (2003).

    Article  Google Scholar 

  16. M. Iwinska, R. Piotrzkowski, E. Litwin-Staszewska, T. Sochacki, M. Amilusik, M. Fijalkowsk, B. Lucznik, and M. Bockowski, Appl. Phys. Express 10, 011003 (2017).

    Article  Google Scholar 

  17. W.R. Willoughby, M.E. Zvanut, S. Paudel, M. Iwinska, T. Sochacki, and M. Bockowski, J. Appl. Phys. 123, 161547 (2017).

    Article  Google Scholar 

  18. M. Matsubara and E. Bellotti, J. Appl. Phys. 121, 195701 (2017).

    Article  Google Scholar 

  19. J.A. Weil, J.R. Bolton, and J.E. Wertz, Elementary Theory and Practical Applications (New York: Wiley, 1994).

    Google Scholar 

  20. J.L. Lyons and C.G. Van de Walle, NPJ Comput. Mater. 3, 12 (2017).

    Article  Google Scholar 

  21. E.R. Glaser, M. Murthy, J.A. Freitas, D.F. Storm, L. Zhou, and D.J. Smith, Phys. B 401–402, 327 (2007).

    Article  Google Scholar 

  22. M.A. Reshchikov and H. Morkoç, J. Appl. Phys. 97, 061301 (2005).

    Article  Google Scholar 

  23. M.A. Reshchikov, A. Usikov, H. Helava, and Y. Makarov, Appl. Phys. Lett. 104, 032103 (2014).

    Article  Google Scholar 

  24. J.L. Lyons, A. Janotti, and C.G. Van de Walle, Appl. Phys. Lett. 97, 152108 (2010).

    Article  Google Scholar 

  25. D.S. Green, U.K. Mishra, and J.S. Speck, J. Appl. Phys. 95, 8456 (2004).

    Article  Google Scholar 

  26. R. Armitage, Q. Yang, and E.R. Weber, J. Appl. Phys. 97, 073524 (2005).

    Article  Google Scholar 

  27. A. Lesnik, M.P. Hoffmann, A. Fariza, J. Bläsing, H. Witte, P. Veit, F. Hörich, C. Berger, J. Hennig, A. Dadgar, and A. Strittmatter, Physica Status Solidi (b) 254, 1600708 (2016).

    Article  Google Scholar 

  28. M.A. Reshchikov, M. Vorobiov, D.O. Demchenko, Ü. ÖzgÜr, H. Morkoç, A. Lesnik, M.P. Hoffmann, F. HÖrich, A. Dadgar, and A. Strittmatter, Phys. Rev. B 98, 125207 (2018).

    Article  Google Scholar 

  29. A.E. Wickenden, D.D. Koleske, R.L. Henry, R.J. Gorman, M.E. Twigg, M. Fatemi, J.A. Freitas, and W.J. Moore, J. Electron. Mater. 29, 21 (2000).

    Article  Google Scholar 

  30. D.D. Koleske, A.E. Wickenden, R.L. Henry, and M.E. Twigg, J. Cryst. Growth 242, 55 (2002).

    Article  Google Scholar 

  31. C.H. Seager, A.F. Wright, J. Yu, and W. Götz, J. Appl. Phys. 92, 6553 (2002).

    Article  Google Scholar 

  32. T. Narita, K. Tomita, Y. Tokuda, T. Kogiso, M. Horita, and T. Kachi, J. Appl. Phys. 124, 215701 (2018).

    Article  Google Scholar 

  33. J. Neugebauer and C.G. Van de Walle, Phys. Rev. B 50, 8067 (1994).

    Article  Google Scholar 

  34. M.E. Zvanut, S. Paudel, U.R. Sunay, W.R. Willoughby, M. Iwinska, T. Sochacki, and M. Bockowski, J. Appl. Phys. 124, 075701 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

The work performed at NRL was supported by the Office of Naval Research and that at UAB by NSF DMR-1606765. We also thank Dr. Jack Lyons (NRL) for helpful discussions and Mr. Will Willoughby for some data analysis. The research in Poland was supported by the Department of the Navy, Office of Naval Research (ONRG-NICOP-N62909-17-1-2004) and by the Polish National Science Center through Project No. 2017/25/B/ST5/02897.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Zvanut.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvanut, M.E., Paudel, S., Glaser, E.R. et al. Incorporation of Carbon in Free-Standing HVPE-Grown GaN Substrates. J. Electron. Mater. 48, 2226–2232 (2019). https://doi.org/10.1007/s11664-019-07016-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07016-w

Keywords

Navigation