Skip to main content
Log in

Using First-Principles Calculations in CALPHAD Models to Determine Carrier Concentration of the Binary PbSe Semiconductor

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

PbSe is a promising thermoelectric that can be further improved by nanostructuring, band engineering, and carrier concentration tuning; therefore, a firm understanding of the defects in PbSe is necessary. The formation energies of point defects in PbSe are computed via first-principles calculations under the dilute-limit approximation. We find that under Pb-rich conditions, PbSe is an n-type semiconductor dominated by doubly-charged Se vacancies. Conversely, under Se-rich conditions, PbSe is a p-type semiconductor dominated by doubly-charged Pb vacancies. Both of these results agree with previously performed experiments. Temperature- and chemical potential-dependent Fermi levels and carrier concentrations are found by enforcing the condition of charge neutrality across all charged atomic and electronic states in the system. The first-principles-predicted charge-carrier concentration is in qualitative agreement with experiment, but slightly varies in the magnitude of carriers. To better describe the experimental data, a CALPHAD assessment of PbSe is performed. Parameters determined via first-principles calculations are used as inputs to a five-sublattice CALPHAD model that was developed explicitly for binary semiconductors. This five sublattice model is in contrast to previous work which treated PbSe as a stoichiometric compound. The current treatment allows for experimental carrier concentrations to be accurately described within the CALPHAD formalism. In addition to the five-sublattice model, a two-sublattice model is also developed for use in multicomponent databases. Both models show excellent agreement with the experimental data and close agreement with first-principles calculations. These CALPHAD models can be used to determine processing parameters that will result in an optimized carrier concentration and peak zT value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.J. DiSalvo, Science 285, 703 (1999).

    Article  CAS  Google Scholar 

  2. G.J. Tan, L.D. Zhao, and M.G. Kanatzidis, Chem. Rev. 116, 12123 (2016).

    Article  CAS  Google Scholar 

  3. K. Biswas, J.Q. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  CAS  Google Scholar 

  4. G.J. Tan, F.Y. Shi, S.Q. Hao, L.D. Zhao, H. Chi, X.M. Zhang, C. Uher, C. Wolverton, and V.P. Dravid, Nat. Commun. 7, 12167 (2016).

    Article  CAS  Google Scholar 

  5. J.P. Heremans, C.M. Thrush, and D.T. Morelli, Phys. Rev. B 70, 5 (2004).

    Article  CAS  Google Scholar 

  6. J. Androulakis, C.H. Lin, H.J. Kong, C. Uher, C.I. Wu, T. Hogan, B.A. Cook, T. Caillat, K.M. Paraskevopoulos, and M.G. Kanatzidis, J. Am. Chem. Soc. 129, 9780 (2007).

    Article  CAS  Google Scholar 

  7. Y.Z. Pei, Z.M. Gibbs, A. Gloskovskii, B. Balke, W.G. Zeier, and G.J. Snyder, Adv. Energy Mater. 4, 12 (2014).

    Article  CAS  Google Scholar 

  8. Y.Z. Pei, A.D. LaLonde, N.A. Heinz, and G.J. Snyder, Adv. Energy Mater. 2, 670 (2012).

    Article  CAS  Google Scholar 

  9. L.D. Zhao, H.J. Wu, S.Q. Hao, C.I. Wu, X.Y. Zhou, K. Biswas, J.Q. He, T.P. Hogan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Energy Environ. Sci. 6, 3346 (2013).

    Article  CAS  Google Scholar 

  10. Y.Z. Pei, A. LaLonde, S. Iwanaga, and G.J. Snyder, Energy Environ. Sci. 4, 2085 (2011).

    Article  CAS  Google Scholar 

  11. H. Wang, Y.Z. Pei, A.D. LaLonde, and G.J. Snyder, Adv. Mater. 23, 1366 (2011).

    Article  CAS  Google Scholar 

  12. H. Wang, Z.M. Gibbs, Y. Takagiwa, and G.J. Snyder, Energy Environ. Sci. 7, 804 (2014).

    Article  CAS  Google Scholar 

  13. C.M. Jaworski, M.D. Nielsen, H. Wang, S.N. Girard, W. Cai, W.D. Porter, M.G. Kanatzidis, and J.P. Heremans, Phys. Rev. B 87, (4) (2013).

    Article  CAS  Google Scholar 

  14. Q. Zhang, F. Cao, W.S. Liu, K. Lukas, B. Yu, S. Chen, C. Opeil, D. Broido, G. Chen, and Z.F. Ren, J. Am. Chem. Soc. 134, 10031 (2012).

    Article  CAS  Google Scholar 

  15. J. Steininger, Metall. Trans. 1, 2939-+ (1970).

    CAS  Google Scholar 

  16. J.W. Doak, K.J. Michel, and C. Wolverton, J. Mater. Chem. C 3, 10630 (2015).

    Article  CAS  Google Scholar 

  17. H.L. Lukas, Computational Thermodynamics The Calphad Method (Cambridge: Cambridge University Press, 2007)

  18. Z.K. Liu, J. Phase Equilib. Diffus. 30, 517 (2009).

    Article  CAS  Google Scholar 

  19. J.C. Lin, R.C. Sharma, and Y.A. Chang, J. Phase Equilib. 17, 253 (1996).

    Article  CAS  Google Scholar 

  20. Y. Liu, Z. Kang, G. Sheng, L. Zhang, J. Wang, and Z. Long, J. Electron. Mater. 41, 1915 (2012).

    Article  CAS  Google Scholar 

  21. J.C. Lin, T.L. Ngai, and Y.A. Chang, Metall. Trans. A 17, 1241 (1986).

    Article  Google Scholar 

  22. J.C. Lin, K.C. Hsleh, R.C. Sharma, and Y.A. Chang, Bull. Alloy Phase Diagr. 10, 340 (1989).

    Article  CAS  Google Scholar 

  23. J.C. Lin, R.C. Sharma, and Y.A. Chang, Bull. Alloy Phase Diagr. 7, 374 (1986).

    Article  CAS  Google Scholar 

  24. W.F. Li, C.M. Fang, M. Dijkstra, and M.A. van Huis, J. Phys.: Condens. Matter 27, 14 (2015).

    Google Scholar 

  25. E.O. Wrasse, P. Venezuela, and R.J. Baierle, J. Appl. Phys. 116, 183703 (2014).

    Article  CAS  Google Scholar 

  26. S. Bajaj, H. Wang, J.W. Doak, C. Wolverton, and G.J. Snyder, J. Mater. Chem. C 4, 1769 (2016).

    Article  CAS  Google Scholar 

  27. A.N. Grundy, E. Povoden, T. Ivas, and L.J. Gauckler, CALPHAD 30, 33 (2006).

    Article  CAS  Google Scholar 

  28. A. Saengdeejing, J.E. Saal, V.R. Manga, and Z.K. Liu, Acta Mater. 60, 7207 (2012).

    Article  CAS  Google Scholar 

  29. J. Rogal, S.V. Divinski, M.W. Finnis, A. Glensk, J. Neugebauer, J.H. Perepezko, S. Schuwalow, M.H.F. Sluiter, and B. Sundman, Phys. Status Solidi B 251, 97 (2014).

    Article  CAS  Google Scholar 

  30. P.W. Guan and Z.K. Liu, Scr. Mater. 133, 5 (2017).

    Article  CAS  Google Scholar 

  31. P.W. Guan, S.L. Shang, G. Lindwall, T. Anderson, and Z.K. Liu, CALPHAD 59, 171 (2017).

    Article  CAS  Google Scholar 

  32. K. Ozturk, Y. Zhong, L.Q. Chen, C. Wolverton, J.O. Sofo, and Z.K. Liu, Metall. Mater. Trans. A 36A, 5 (2005).

    Article  CAS  Google Scholar 

  33. L.J. Zhang, J. Wang, Y. Du, R.X. Hu, P. Nash, X.G. Lu, and C. Jiang, Acta Mater. 57, 5324 (2009).

    Article  CAS  Google Scholar 

  34. Y. Zhong, C. Wolverton, Y.A. Chang, and Z.K. Liu, Acta Mater. 52, 2739 (2004).

    Article  CAS  Google Scholar 

  35. S. Bajaj, G.S. Pomrehn, J.W. Doak, W. Gierlotka, H.J. Wu, S.W. Chen, C. Wolverton, W.A. Goddard, and G.J. Snyder, Acta Mater. 92, 72 (2015).

    Article  CAS  Google Scholar 

  36. C.G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).

    Article  CAS  Google Scholar 

  37. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C.G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014).

    Article  Google Scholar 

  38. S. Lany and A. Zunger, Phys. Rev. B 78, 235104 (2008).

    Article  CAS  Google Scholar 

  39. A. Goyal, P. Gorai, E.S. Toberer, and V. Stevanovic, Npj Comput. Mater. 3, Article number 42 (2017).

  40. C. Freysoldt, J. Neugebauer, and C.G. Van de Walle, Phys. Rev. Lett. 102, (1) (2009).

    Article  CAS  Google Scholar 

  41. Y. Kumagai and F. Oba, Phys. Rev. B 89, 195205 (2014).

    Article  CAS  Google Scholar 

  42. T.R. Durrant, S.T. Murphy, M.B. Watkins, and A.L. Shluger, J. Chem. Phys. 149, (2) (2018).

    Article  CAS  Google Scholar 

  43. G. Makov and M.C. Payne, Phys. Rev. B 51, 4014 (1995).

    Article  CAS  Google Scholar 

  44. W. Kohn and L.J. Sham, Phys. Rev. 140, 1133 (1965).

    Article  Google Scholar 

  45. P. Hohenberg and W. Kohn, Phys. Rev. B 136, B864 (1964).

    Article  Google Scholar 

  46. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

    Article  CAS  Google Scholar 

  47. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  48. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  49. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  50. A. Belsky, M. Hellenbrandt, V.L. Karen, and P. Luksch, Acta Crystallogr. Sect. B Struct. Sci. 58, 364 (2002).

    Article  CAS  Google Scholar 

  51. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  52. M. Gajdos, K. Hummer, G. Kresse, J. Furthmuller, and F. Bechstedt, Phys. Rev. B 73, 045112 (2006).

    Article  CAS  Google Scholar 

  53. S. Baroni and R. Resta, Phys. Rev. B 33, 7017 (1986).

    Article  CAS  Google Scholar 

  54. X. Wu, D. Vanderbilt, and D.R. Hamann, Phys. Rev. B 72, 035105 (2005).

    Article  CAS  Google Scholar 

  55. Q. Chen, M. Hillert, B. Sundman, W.A. Oates, S.G. Fries, and R. Schmid-Fetzer, J. Electron. Mater. 27, 961 (1998).

    Article  CAS  Google Scholar 

  56. W.A. Oates, G. Eriksson, and H. Wenzl, J. Alloys Compd. 220, 48 (1995).

    Article  CAS  Google Scholar 

  57. Q. Chen and M. Hillert, J. Alloys Compd. 245, 125 (1996).

    Article  CAS  Google Scholar 

  58. J.B. Li and J.C. Tedenac, J. Electron. Mater. 31, 321 (2002).

    Article  Google Scholar 

  59. J.B. Li and L.L. Kerr, Opt. Mater. 35, 1213 (2013).

    Article  CAS  Google Scholar 

  60. B. Jansson, Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden (1984).

  61. B. Sundman, B. Jansson, and J.O. Andersson, CALPHAD 9, 153 (1985).

    Article  CAS  Google Scholar 

  62. A.T. Dinsdale, CALPHAD 15, 317 (1991).

    Article  CAS  Google Scholar 

  63. A.T. Dinsdale, A.V. Khvan, and A. Watson, Mater. Sci. Technol. 30, 1715 (2014).

    Article  CAS  Google Scholar 

  64. P. Franke, J. Phase Equilib. Diffus. 35, 780 (2014).

    Article  CAS  Google Scholar 

  65. N. Ohashi and K. Igaki, Trans. Jpn. Inst. Met. 5, 94 (1964).

    Article  CAS  Google Scholar 

  66. N. Chou, K. Komarek, and E. Miller, Trans. Metall. Soc. AIME 245, 1553 (1969).

    CAS  Google Scholar 

  67. A.F. Kohan, G. Ceder, D. Morgan, and C.G. Van de Walle, Phys. Rev. B 61, 15019 (2000).

    Article  CAS  Google Scholar 

  68. O. Madelung, Semiconductors: Data Handbook, 3rd ed. (Berlin: Springer, 2004).

    Book  Google Scholar 

  69. M.C. Peters, J.W. Doak, W.-W. Zhang, J.E. Saal, G.B. Olson, and P.W. Voorhees, CALPHAD 58, 17 (2017).

    Article  CAS  Google Scholar 

  70. A.R. Calawa, T.C. Harman, M. Finn, and P. Youtz, Trans. Metall. Soc. AIME 242, 374 (1968).

    CAS  Google Scholar 

  71. B.J. Sealy and A.J. Crocker, J. Mater. Sci. 8, 1737 (1973).

    Article  CAS  Google Scholar 

  72. R.F. Brebrick and E. Gubner, J. Chem. Phys. 36, 170 (1962).

    Article  CAS  Google Scholar 

  73. N. Wang, D. West, J.W. Liu, J. Li, Q.M. Yan, B.L. Gu, S.B. Zhang, and W.H. Duan, Phys. Rev. B 89, 045142 (2014).

    Article  CAS  Google Scholar 

  74. J.W. Doak, C. Wolverton, and V. Ozolins, Phys. Rev. B 92, 174306 (2015).

    Article  CAS  Google Scholar 

  75. H. Wang, Y.Z. Pei, A.D. LaLonde, and G.J. Snyder, Proc. Natl. Acad. Sci. U.S.A. 109, 9705 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge thermoelectrics research at Northwestern University through the Center for Hierarchical Materials Design (CHiMaD) and financial support from the DARPA SIMPLEX program through SPAWAR (Contract #N66001-15-C-4036). M. Peters was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

Funding

Funding was provided by Defense Advanced Research Projects Agency and National Institute of Standards and Technology (US).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew C. Peters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peters, M.C., Doak, J.W., Saal, J.E. et al. Using First-Principles Calculations in CALPHAD Models to Determine Carrier Concentration of the Binary PbSe Semiconductor. J. Electron. Mater. 48, 1031–1043 (2019). https://doi.org/10.1007/s11664-018-6819-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6819-z

Keywords

Navigation