Skip to main content
Log in

Effect of Structure on the Electronic, Magnetic and Thermal Properties of Cubic Fe2MnxNi1−xSi Heusler Alloys

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The concentration dependence of the phase stability, half-metallicity, thermal and magnetic properties of Fe2MnxNi1−xSi (0 ≤ x ≤ 1) Heusler alloys in two structures, Cu2MnAl (Fm3m) and Hg2TiCu (F43m), were investigated at the ab initio level using density functional theory. The exchange–correlation term was assessed using local spin density (LSDA) and generalized gradient approximation (GGA) along with Hubbard-U (U) corrections. Spin-polarized electronic band structure calculations for Fe2MnxNi1−xSi (0 ≤ x ≤ 1) alloys in their Cu2MnAl- and Hg2TiCu-structure have been carried out. These results indicate that the Hg2CuTi-type structure is more stable than the Cu2MnAl-type structure with increasing Mn content, from x = 0 to 0.25 using LSDA. No significant differences were observed using LSDA + U over GGA. The full Heusler compounds Fe2MnxNi1−xSi (0 ≤ x ≤ 1) are half metals in the Cu2MnAl-type structure for x = 0.75 and x = 1, and behave like a metal in the CuHg2Ti-type. The minority bands exhibit a band gap of about 0.11 (0.56) eV for Fe2Mn0.75Ni0.25Si using GGA (LSDA + U). Using the GGA scheme, the obtained band energy was smaller than that obtained by using the LSDA + U approach. These results clearly show that the lattice parameter, bulk modulus and total magnetic moment vary quadratically with Mn doping. The main contribution to the total magnetic moment comes from Mn or Fe atoms in B sites in both types of structures. The total magnetic moment of Fe2MnxNi1−xSi (0 ≤ x ≤ 1) alloys is typically in the range of 2–3 μB in the Cu2MnAl-Type and 3–4 μB in Hg2TiCu-Type per formula unit and consists of an average of 2 μB per Mn atom and less than 1 μB per Fe atom in the Cu2MnAl-Type, and an average of 2 μB per Mn atom and around 1 μB per Fe atom in the B site Hg2TiCu-Type. Using the quasi-harmonic Debye model, the concentration and temperature effects on the unit cell volume, thermal expansion coefficient, bulk modulus, the Debye temperature and heat capacity, for Fe2MnxNi1−xSi (0 ≤ x ≤ 1) Heusler alloys are investigated and analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. Von Molnar, M.L. Roukes, A.Y. Chtchelkanova, and D.E. Treger, Science 294, 1488 (2001).

    Article  Google Scholar 

  2. X. Wu, J. Han, Y. Feng, G. Li, C. Wang, G. Dingb, and G. Gao, RSC Adv. 7, 44499 (2017).

    Article  Google Scholar 

  3. X. Li, X. Wu, and J. Yang, J. Am. Chem. Soc. 136, 11065 (2014).

    Article  Google Scholar 

  4. S. Zhu, C.T. Yip, S. Peng, K. Wu, K.L. Yao, C.L. Mak, and C. Lam, Phys. Chem. Chem. Phys. (2018). https://doi.org/10.1039/C7CP08635K.

    Google Scholar 

  5. B. Xu, M. Zhang, and H. Yan, Phys. Status Solidi B 248, 2870 (2011).

    Article  Google Scholar 

  6. N. Kima, R. Kimb, and J. Yuc, J. Magn. Magn. Mater. (2018). https://doi.org/10.1016/j.jmmm.2018.03.034.

    Google Scholar 

  7. I. Galanakis, P.H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002).

    Article  Google Scholar 

  8. S. Picozzi, A. Continenza, and A.J. Freeman, Phys. Rev. B 66, 094421 (2002).

    Article  Google Scholar 

  9. G.H. Fecher, H.C. Kandpal, S. Wurmehl, and C. Felser, J. Appl. Phys. 99, 08J106 (2006).

    Article  Google Scholar 

  10. I. Galanakis and E. ŞaŞıoğlu, Appl. Phys. Lett. 99, 052509 (2011).

    Article  Google Scholar 

  11. R.A. De Groot, F.M. Mueller, P.G. van Engen, and K.H.J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).

    Article  Google Scholar 

  12. Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato, A. Sakuma, T. Miyazaki, and H. Kubota, Appl. Phys. Lett. 88, 192508 (2006).

    Article  Google Scholar 

  13. Y. Du, G.Z. Xu, E.K. Liu, G.J. Li, H.G. Zhang, S.Y. Yu, W.H. Wang, and G.H. Wu, J. Magn. Magn. Mater. 335, 101 (2013).

    Article  Google Scholar 

  14. T.M. Nakatani, A. Rajanikanth, Z. Gercsi, Y.K. Takahashi, K. Inomata, and K. Hono, J. Appl. Phys. 102, 033916 (2007).

    Article  Google Scholar 

  15. R. Shan, H. Sukegawa, W.H. Wang, M. Kodzuka, T. Furubayashi, T. Ohkubo, S. Mitani, K. Inomata, and K. Hono, Phys. Rev. Lett. 102, 246601 (2009).

    Article  Google Scholar 

  16. W.H. Wang, M. Przybylski, W. Kuch, L.I. Chelaru, J. Wang, Y.F. Lu, J. Barthel, H.L. Meyerheim, and J. Kirschner, Phys. Rev. B 71, 144416 (2005).

    Article  Google Scholar 

  17. S. Fujii, S. Sugimura, S. Ishida, and S. Asano, J. Phys. Condens. Matter 2, 8583 (1990).

    Article  Google Scholar 

  18. P.J. Brown, K.-U. Neumann, P.J. Webster, and K.R.A. Ziebeck, J. Phys. Condens. Matter 12, 1827 (2000).

    Article  Google Scholar 

  19. M.P. Raphael, B. Ravel, Q. Huang, M.A. Willard, S.F. Cheng, B.N. Das, R.M. Stroud, K.M. Bussmann, J.H. Claassen, and V.G. Harris, Phys. Rev. B66, 104429 (2002).

    Article  Google Scholar 

  20. U. Geiersbach, A. Bergmann, and K. Westerholt, J. Magn. Magn. Mater. 240, 546 (2002).

    Article  Google Scholar 

  21. S. Kämmerer, S. Heitmann, D. Meyners, D. Sudfeld, A. Thomas, A. Hütten, and G. Reiss, J. Appl. Phys. 93, 7945 (2003).

    Article  Google Scholar 

  22. L.J. Singh, Z.H. Barber, Y. Miyoshi, Y. Bugoslavsky, W.R. Branford, and L.F. Cohen, Appl. Phys. Lett. 84, 2367 (2004).

    Article  Google Scholar 

  23. W.H. Wang, M. Przybylskia, W. Kuch, L.I. Chelaru, J. Wang, Y.F. Lu, J. Barthel, and J. Kirschner, J. Magn. Magn. Mater. 286, 336 (2005).

    Article  Google Scholar 

  24. V.K. Lazarov, K. Yoshida, J. Sato, P.J. Hasnip, M. Oogane, A. Hirohata, and Y. Ando, Appl. Phys. Lett. 98, 242508 (2011).

    Article  Google Scholar 

  25. N. Tezuka, N. Ikeda, F. Mitsuhashi, and S. Sugimoto, Appl. Phys. Lett. 94, 162504 (2009).

    Article  Google Scholar 

  26. T. Ambrose, J.J. Krebs, and G.A. Prinz, Appl. Phys. Lett. 76, 3280 (2000).

    Article  Google Scholar 

  27. T. Block, C. Felser, G. Jakob, J. Ensling, B. Mühling, P. Gütlich, and R.J. Cava, J. Solid State Chem. 176, 646 (2003).

    Article  Google Scholar 

  28. S. Ishida, S. Mizutani, S. Fujii, and S. Asano, Mater. Trans. 47, 464 (2006).

    Article  Google Scholar 

  29. S. Fujii, S. Ishida, and S. Asano, J. Phys. Soc. Jpn. 64, 185 (1995).

    Article  Google Scholar 

  30. K.A.R. Ziebeck and P.J. Webster, Philos. Mag. 34, 973 (1976).

    Article  Google Scholar 

  31. M. Kawakami, Physica B 186, 1037 (1993).

    Article  Google Scholar 

  32. S. Fujii, S. Ishida, and S. Asano, J. Phys. Soc. Jpn. 63, 1881 (1994).

    Article  Google Scholar 

  33. B. Hamad and Q.M. Hu, Phys. Status Solidi B 248, 2893 (2011).

    Article  Google Scholar 

  34. B. Balke, G.H. Fecher, and C. Felser, Appl. Phys. Lett. 90, 242503 (2007).

    Article  Google Scholar 

  35. T. Kubota, S. Tsunegi, M. Oogane, S. Mizukami, T. Miyazaki, H. Naganuma, and Y. Ando, Appl. Phys. Lett. 94, 122504 (2009).

    Article  Google Scholar 

  36. S. Ishida, D. Nagatomo, S. Fujiiand, and S. Asano, Mater. Trans. 49, 114 (2008).

    Article  Google Scholar 

  37. A. Otero-de-la-Roza, D. Abbasi-Pérez, and V. Luaña, Comput. Phys. Commun. 182, 2232 (2011).

    Article  Google Scholar 

  38. A. Otero-de-la-Roza and V. Luaña, Comput. Phys. Commun. 182, 1708 (2011).

    Article  Google Scholar 

  39. F.S.W. Heusler and E. Haupt, Verh. Dtsch. Phys. Ges. 5, 219 (1903).

    Google Scholar 

  40. S. Picozzi, A. Continenza, and A.J. Freeman, Phys. Rev. B 69, 094423 (2004).

    Article  Google Scholar 

  41. K. Özdoğan and I. Galanakis, J. Magn. Magn. Mater. 321, L34 (2009).

    Article  Google Scholar 

  42. T.J. Burch, T. Litrenta, and J.I. Budnick, Phys. Rev. Lett. 33, 421 (1974).

    Article  Google Scholar 

  43. V. Niculescu, K. Raj, T.J. Burch, and J.I. Budnick, Phys. Rev. B 13, 3167 (1976).

    Article  Google Scholar 

  44. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2 K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn. Universitat, Wien, Austria. ISBN 3-9501031-1-1-2 (2001).

  45. J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  Google Scholar 

  46. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  47. H.C. Kandpal, G.H. Fecher, C. Felser, and G. Schönhense, Phys. Rev. B73, 094422 (2006).

    Article  Google Scholar 

  48. D.P. Rai, A. Shankar, J. Sandeep, L.R. Singh, M. Jamal, S.J. Hashemifar, M.P. Ghimire, and R.K. Thapa, Armen. J. Phys. 5, 105 (2012).

    Google Scholar 

  49. H.C. Kandpal, G.H. Fecher, and C. Felser, J. Phys. D Appl. Phys. 40, 1507 (2007).

    Article  Google Scholar 

  50. T. Bandyopadhyay and D.D. Sarma, Phys. Rev. B 39, 3517 (1989).

    Article  Google Scholar 

  51. O. Jepsen and O.K. Andersen, Solid State Commun. 9, 1763 (1971).

    Article  Google Scholar 

  52. Y.J. Zhang, W.H. Wang, H.G. Zhang, E.K. Liu, R.S. Ma, and G.H. Wu, Physica B 420, 86 (2013).

    Article  Google Scholar 

  53. B. Ravel, M.P. Raphael, V.G. Harris, and Q. Huang, Phys. Rev. B 65, 184431 (2002).

    Article  Google Scholar 

  54. J. Karel, F. Bernardi, C. Wang, R. Stinshoff, N.-O. Born, S. Ouardi, U. Burkhardt, G.H. Fecher, and C. Felserhys, Chem. Chem. Phys. 17, 31707 (2015).

    Article  Google Scholar 

  55. S. Wurmehl, J.T. Kohlhepp, H.J.M. Swagten, B. Koopmans, M. Wόjcik, B. Balke, C.G.F. Blum, V. Ksenofontov, G.H. Fecher, and C. Felser, Appl. Phys. Lett. 91, 052506 (2007).

    Article  Google Scholar 

  56. F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).

    Article  Google Scholar 

  57. H. Luo, Z. Zhu, M. Li, S. Xu, H. Liu, J. Qu, Y. Li, and G. Wu, J. Phys. D Appl. Phys. 40, 7121 (2007).

    Article  Google Scholar 

  58. M. Belkhouane, S. Amari, A. Yakoubi, A. Tadjer, S. Méçabih, G. Murtaza, S. BinOmran, and R. Khenata, J. Magn. Magn. Mater. 377, 211 (2015).

    Article  Google Scholar 

  59. S. Plogmann, T. Schlathölter, J. Braun, M. Neumann, Y.M. Yarmoshenko, M.V. Yablonskikh, E.I. Shreder, E.Z. Kurmaev, A. Wrona, and A. Slebarski, Phys. Rev. B60, 6428 (1999).

    Article  Google Scholar 

  60. M. Pugaczowa-Michalska, A. Go, and L. Dobrzyński, Phys. Status Solidi B 242, 463 (2005).

    Article  Google Scholar 

  61. D.C. Gupta and I.H. Bhat, Mater. Chem. Phys. 146, 303 (2014).

    Article  Google Scholar 

  62. H. Mori, Y. Odahara, D. Shigyo, T. Yoshitake, and E. Miyoshi, Thin Solid Films 520, 4979 (2012).

    Article  Google Scholar 

  63. B. Hamad, Z. Charifi, H. Baaziz, and F. Soyalp, J. Magn. Magn. Mater. 324, 3345 (2012).

    Article  Google Scholar 

  64. Z. Charifi, B. Hamad, H. Baaziz, and F. Soyalp, J. Magn. Magn. Mater. 393, 139 (2015).

    Article  Google Scholar 

  65. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, J. Appl. Phys. 84, 4891 (1998).

    Article  Google Scholar 

  66. P. Debye, Ann. Phys. 39, 789 (1912).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Charifi or H. Baaziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noui, S., Charifi, Z., Baaziz, H. et al. Effect of Structure on the Electronic, Magnetic and Thermal Properties of Cubic Fe2MnxNi1−xSi Heusler Alloys. J. Electron. Mater. 48, 337–351 (2019). https://doi.org/10.1007/s11664-018-6704-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6704-9

Keywords

Navigation