Skip to main content

Advertisement

Log in

A 3D Configuration Electrode for Lithium–Sulfur Batteries

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Lithium–sulfur batteries have become one of the most promising high-energy batteries owing to their high energy density and low cost. Nevertheless, one of the major problems is the infamous shuttle effect of polysulfides, which causes active material sulfur loss and low Coulombic efficiency. Here, we designed a 3-D configuration electrodes. Multi-walled carbon nanotubes paper (MWCNTsP) was used as the current collector, and MWCNTs film was used as the interlayer (MWCNTsI) between the positive electrode and the separator. The unique configuration retarded the dissolution and dispersion of polysulfides. The electrochemical tests showed that the initial discharge capacity reached 1352 mAh/g and the Coulombic efficiency reached around 100% with the 3-D configuration electrode (MWCNTsP–S@MWCNTsI). The discharge capacity remained 1028 mAh/g after 20 cycles. Additionally, the batteries maintained a specific capacity of 902 mAh/g, 782 mAh/g and 509 mAh/g at the current rate of 1 C, 2 C and 5 C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yang, G. Zheng, and Y. Cui, Chem. Soc. Rev. 42, 3018 (2013).

    Article  CAS  Google Scholar 

  2. J. Liang, Z.H. Sun, F. Li, and H.M. Cheng, Energy Storage Mater. 2, 76 (2016).

    Article  Google Scholar 

  3. A. Manthiram, Y. Fu, S.H. Chung, C. Zu, and Y.S. Su, Chem. Rev. 114, 11751 (2014).

    Article  CAS  Google Scholar 

  4. S. Evers and L.F. Nazar, Acc. Chem. Res. 46, 1135 (2013).

    Article  CAS  Google Scholar 

  5. S. Xin, L. Gu, N.H. Zhao, Y.X. Yin, L.J. Zhou, Y.G. Guo, and L.J. Wan, J. Am. Chem. Soc. 134, 18510 (2012).

    Article  CAS  Google Scholar 

  6. M. Yu, J. Ma, H. Song, A. Wang, F. Tian, Y. Wang, H. Qiu, and R. Wang, Energy Environ. Sci. 9, 1495 (2016).

    Article  CAS  Google Scholar 

  7. Q. Zhang, Y. Wang, Z.W. Seh, Z. Fu, R. Zhang, and Y. Cui, Nano Lett. 15, 3780 (2015).

    Article  CAS  Google Scholar 

  8. A. Manthiram, S.H. Chung, and C. Zu, Adv. Mater. 27, 1980 (2015).

    Article  CAS  Google Scholar 

  9. Q. Pang, D. Kundu, M. Cuisinier, and L.F. Nazar, Nat. Commun. 5, 4759 (2014).

    Article  CAS  Google Scholar 

  10. Y.V. Mikhaylik and J.R. Akridge, J. Electrochem. Soc. 151, A1969 (2004).

    Article  CAS  Google Scholar 

  11. M.R. Busche, P. Adelhelm, H. Sommer, H. Schneider, K. Leitner, and J. Janek, J. Power Sour. 259, 289 (2014).

    Article  CAS  Google Scholar 

  12. J. Zhang, H. Hu, Z. Li, and X.W. Lou, Angew. Chem. Int. Ed. 55, 3982 (2016).

    Article  CAS  Google Scholar 

  13. A.F. Hofmann, D.N. Fronczek, and W.G. Bessler, J. Power Sour. 259, 300 (2014).

    Article  CAS  Google Scholar 

  14. Q. Dong, C. Wang, and M. Zheng, Prog. Chem. 23, 533 (2011).

    CAS  Google Scholar 

  15. J.J. Cheng, Y. Pan, J.A. Pan, H.J. Song, and Z.S. Ma, RSC Adv. 5, 68 (2014).

    Article  Google Scholar 

  16. Z. Li, J. Zhang, and X.W. Lou, Angew. Chem. Int. Ed. 54, 12886 (2015).

    Article  CAS  Google Scholar 

  17. S. Lu, Y. Chen, X. Wu, Z. Wang, and Y. Li, Sci. Rep. 4, 4629 (2014).

    Article  Google Scholar 

  18. G. Zhou, S. Pei, L. Li, D.W. Wang, S. Wang, K. Huang, L.C. Yin, F. Li, and H.M. Cheng, Adv. Mater. 26, 625 (2014).

    Article  CAS  Google Scholar 

  19. J.Q. Huang, Q. Zhang, and F. Wei, Energy Storage Mater. 1, 127 (2015).

    Article  Google Scholar 

  20. Z. Xiao, Z. Yang, L. Wang, H. Nie, E. Zhong, Q. Lai, X. Xu, L. Zhang, and S. Huang, Adv. Mater. 27, 2891 (2015).

    Article  CAS  Google Scholar 

  21. S.H. Chung and A. Manthiram, Adv. Mater. 26, 1360 (2014).

    Article  CAS  Google Scholar 

  22. M.Q. Zhao, Q. Zhang, J.Q. Huang, G.L. Tian, J.Q. Nie, H.J. Peng, and F. Wei, Nat. Commun. 5, 3410 (2014).

    Article  Google Scholar 

  23. H.A. Salem, G. Babu, C.V. Rao, and L.M.R. Arava, J. Am. Chem. Soc. 137, 11542 (2015).

    Article  Google Scholar 

  24. Y. Li, J. Fan, J. Zhang, J. Yang, R. Yuan, J. Chang, M. Zheng, and Q. Dong, ACS Nano 11, 11417 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Jiangxi scientific fund (20142BBE50071) and Jiangxi education fund (KJLD13006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Sun.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Nie, Y., Sun, X. et al. A 3D Configuration Electrode for Lithium–Sulfur Batteries. J. Electron. Mater. 47, 7449–7455 (2018). https://doi.org/10.1007/s11664-018-6685-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6685-8

Keywords

Navigation