Skip to main content
Log in

Void Formation and Intermetallic Growth in Pulse Electrodeposited Cu-Sn Layers for MEMS Packaging

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electrodeposited copper (Cu)-tin (Sn) based solid–liquid interdiffusion (SLID) bonding is becoming popular in wafer-scale packaging of inertial Micro-Electro-Mechanical-Systems (MEMS) sensors due to its inherent advantages of lower cost, low processing temperatures and less stringent surface uniformity requirements. However, eliminating micron-size voids within intermetallic compounds (IMCs) and bond interfaces has remained a challenging task. The present study focuses upon IMC growth and void formation at varying temperatures and times. Stacks of varying thickness of Cu and Sn were fabricated by electrodeposition, and the samples were annealed at temperature ranging up to 300°C. Scalloped shaped Cu6Sn5 (η-phase) and comparatively uniform Cu3Sn (ε-phase) intermetallics were observed. Experimental results show that the growth of metastable Cu6Sn5 dominates IMC formation at lower temperatures but as temperature increases, Cu3Sn dominates over the Cu6Sn5 growth. This IMC growth transition from Cu6Sn5 dominant growth to Cu3Sn dominant growth depends on the annealing temperature and has a critical time duration. The IMC thicknesses are compared with those obtained by numerical simulation models. For given annealing temperatures, intermittent voids formed in the IMC layers show increasing size and decreasing void fraction trends with increasing annealing times. The results suggest that Cu-Sn SLID bonding performed at 275°C yields reliable bonding since the void growth is minimal. Based on these results, a test vehicle containing a kelvin structure and daisy chains (having large number of Cu-Sn bonded structure), was fabricated, resulting in electrical resistances lower than 30 m-ohms and 6 ohms, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Esashi, J. Micromech. Microeng. 18, 073001 (2008).

    Article  Google Scholar 

  2. C. Ko and K. Chen, Microelectron. Reliab. 50, 481 (2010).

    Article  CAS  Google Scholar 

  3. J.F. Li, P.A. Agyakwa, and C.M. Johnson, Acta Mater. 59, 1198 (2011).

    Article  CAS  Google Scholar 

  4. S. Marauska, M. Claus, T. Lisec, and B. Wagner, Microsyst. Technol. 19, 1119 (2013).

    Article  CAS  Google Scholar 

  5. A. Munding, H. Hubner, A. Kaiser, S. Penka, P. Benkart, and E. Kohn, Wafer Level 3-D ICs Process Technology, ed. C.S. Tan, R.J. Gutmann, and L.R. Reif (New York: Springer, 2008), p. 131.

    Google Scholar 

  6. C. Yuhan and L. Le, J. Semicond. 30, 086001-1 (2009).

    Article  Google Scholar 

  7. H. Liu, G. Salomonsen, K. Wang, K.E. Aasmundtveit, and N. Hoivik, IEEE Trans. Pack. Manuf. 1, 1350 (2011).

    CAS  Google Scholar 

  8. H. Xu, A. Rautiainen, V. Vuorinen, E. Österlund, T. Suni, H. Heikkinen, P. Monnoyer, and M. Paulasto-KrÖckel, in ESTC Conference Proceedings (2014), pp. 1–5.

  9. B. Lee and J. Yoon, J. Electron. Mater. 47, 430 (2018).

    Article  CAS  Google Scholar 

  10. T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng. R 49, 1 (2005).

    Article  Google Scholar 

  11. H. Liu, K. Wang, K.E. Aasmundtveit, and N. Hoivik, J. Electron. Mater. 41, 2453 (2012).

    Article  CAS  Google Scholar 

  12. H. Huebner, S. Penka, B. Barchmann, M. Eigner, W. Gruber, M. Nobis, S. Janka, G. Kristen, and M. Schneegans, Microelectron. Eng. 83, 2155 (2006).

    Article  CAS  Google Scholar 

  13. T.T. Luu, A.N.I. Duan, K.E. Aasmundtveit, and N. Hoivik, J. Electron. Mater. 42, 3582 (2013).

    Article  CAS  Google Scholar 

  14. B. Balakrisnan, C.C. Chum, M. Li, Z. Chen, and T. Cahyadi, J. Electron. Mater. 32, 166 (2003).

    Article  CAS  Google Scholar 

  15. N.S. Bosco and F.W. Zok, Acta Mater. 52, 2965 (2004).

    Article  CAS  Google Scholar 

  16. A. Paul, C. Ghosh, and W.J. Boettinger, Metall. Mater. Trans. A 42, 952 (2011).

    Article  CAS  Google Scholar 

  17. W. Kern, J. Electrochem. Soc. 137, 1887 (1990).

    Article  CAS  Google Scholar 

  18. J. Yu and J.Y. Kim, Acta Mater. 56, 5514 (2008).

    Article  CAS  Google Scholar 

  19. G. Ross, V. Vuorinen, and M. Paulasto-Kröckel, J. Alloys Compd. 677, 127 (2016).

    Article  CAS  Google Scholar 

  20. L. Yin and P. Borgesen, J. Mater. Res. 26, 455 (2011).

    Article  CAS  Google Scholar 

  21. A. Paul, J. Mater. Sci. Mater. Electron. 22, 833 (2011).

    Article  CAS  Google Scholar 

  22. W. Yang and R.W. Messler, J. Electron. Mater. 23, 765 (1994).

    Article  CAS  Google Scholar 

  23. G. Ross, H. Xu, V. Vuorinen, and M. Paulasto-kröckel, in 5th Electronics System-Integration Technology Conference (ESTC) Proceedings (2014), pp. 1–3.

  24. S. Kumar, J. Smetana, D. Love, J. Watkowski, R. Parker, and C.A. Handwerker, J. Electron. Mater. 40, 2415 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the financial support from Industrial Research and Consultancy Centre (IRCC), IIT-Bombay, under the research Grant 15IRCCSG002. Authors would also like to thank Mr. Ronak Gupta for support in MATLAB based graphic user interface (GUI) development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Dixit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannojia, H.K., Sharma, S.K. & Dixit, P. Void Formation and Intermetallic Growth in Pulse Electrodeposited Cu-Sn Layers for MEMS Packaging. J. Electron. Mater. 47, 7386–7400 (2018). https://doi.org/10.1007/s11664-018-6679-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6679-6

Keywords

Navigation