Skip to main content
Log in

Dielectric Resonator Antennas with Frequency Stability Under Severe Temperature Variations Based on Li2MgTi3O8 Ceramic Matrix Added with Bi2O3

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper presents the application of the Li2MgTi3O8 (LMT) ceramic matrix added with small quantities (0 wt.%, 1 wt.%, 3 wt.%, and 5 wt.%) of Bi2O3 for building and studying dielectric resonator antennas (DRA) to operate in microwave frequency bands. A low-cost procedure of manufacturing was applied to produce a material with good dielectric characteristics such as near zero temperature coefficient of resonant frequency (τf) in − 8.37 ppm.°C−1 for LMT added with 3 wt.% Bi2O3, relative permittivity (εr) varying approximately between 19 and 24 and loss tangent (tan δ) varying between 5.41 × 10−4 and 1.42 × 10−3. Antenna prototypes and computational models were built for each compound, showing excellent agreement between measurements and simulations. All prototypes and simulated models have bandwidths (BW) wider than 100 MHz with resonant frequencies near 3.5 GHz. The gains and radiation efficiencies of the simulated antennas remained above 6.3 dBi and 98%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kajfez and P. Guillon, Dielectric Resonators. Library (1998). 1-884932-05-3.

  2. S.A. Long, M.W. McAllister, and L.C. Shen, IEEE Trans. Antennas Propag. 31, 406–412 (1983).

    Article  Google Scholar 

  3. K.M. Luk and K.W. Leung, Dielectric Resonator Antennas (Research Studies Press, 2003).

  4. A. Petosa, Dielectric Resonator Antenna Handbook (Artech House, 2007).

  5. Y-X Guo, Y-F Ruan, and X-Q Shi, IEEE Trans. Antennas Propag. 53, 3394–3397 (2005).

    Article  Google Scholar 

  6. D. Guha and Y.M.M. Antar, IEEE Trans. Antennas Propag. 54, 2657–2662 (2006).

    Article  Google Scholar 

  7. M.T. Sebastian, Dielectric Materials for Wireless Communication https://doi.org/10.1016/B978-0-08-045330-9.00006-6.

    Chapter  Google Scholar 

  8. A. Moulson and J. Herbert, Electroceramics (Wiley, 2003). https://doi.org/10.1002/0470867965.

  9. D. Guha, M. Antar, Y.M. Ittipiboon, A. Petosa, and D. Lee, IEEE Antennas Wirel. Propag. Lett. 5, 373–376 (2006).

    Article  Google Scholar 

  10. H. Kawai, M. Tabuchi, M. Nagata, H. Tukamoto, and A.R. West, J. Mater. Chem. 8, 1273–1280 (1998).

    Article  CAS  Google Scholar 

  11. S. George and M.T. Sebastian, J. Am. Ceram. Soc. 93, 2164–2166 (2010).

    Article  CAS  Google Scholar 

  12. S. George and M.T. Sebastian, Int. J. Appl. Ceram. Technol. 8, 1400–1407 (2011).

    Article  CAS  Google Scholar 

  13. P. Zhang, et al., Mater. Lett. 123, 195–197 (2014).

    Article  CAS  Google Scholar 

  14. Y. Bao, et al., J. Cent. South Univ. 19, 1202–1205 (2012).

    Article  CAS  Google Scholar 

  15. Y. Tang, L. Fang, H. Zhou, Q. Liu, and H. Zhang, Ceram. Int. 23, 3318–3323 (2013).

    Google Scholar 

  16. X. Chen, H. Zhou, L. Fang, X. Liu, and Y. Wang, J. Alloys Compd. 509, 5829–5832 (2011).

    Article  CAS  Google Scholar 

  17. G.G. Yao, P. Liu, and H.W. Zhang, J. Mater. Sci. Mater. Electron. 24, 1128–1131 (2012).

    Article  Google Scholar 

  18. R.G.M. Oliveira, et al., Microw. Opt. Technol. Lett. 58, 1211–1217 (2016).

    Article  Google Scholar 

  19. R. Young, The Rietveld Method (Oxford University Press, 1993). https://doi.org/10.1017/cbo9781107415324.004.

  20. B.W. Hakki and P.D. Coleman, IEEE Trans. Microw. Theory Tech. 8, 402–410 (1960).

    Article  Google Scholar 

  21. W.E. Courtney, IEEE Trans. Microw. Theory Tech. 18, 476–485 (1970).

    Article  Google Scholar 

  22. M. Bengisu, Engineering Ceramics. Advanced Materials and Processes (Springer, 2001). https://doi.org/10.1007/978-3-662-04350-9.

    Book  Google Scholar 

  23. M.A.S. Silva, T.S.M. Fernandes, and A.S.B. Sombra, J. Appl. Phys. 112, 074106 (2012).

    Article  Google Scholar 

  24. R.A. Young, A. Sakthivel, T.S. Moss, and C.O. Paiva-Santos, J. Appl. Crystallogr. 28, 366–367 (1995).

    Article  Google Scholar 

  25. L. Bleicher, J.M. Sasaki, and C.O. PaivaSantos, J. Appl. Crystallogr. 33, 1189 (2000).

    Article  CAS  Google Scholar 

  26. C. Pascoal, R. Machado, and V.C. Pandolfelli, Cerâmica 48, 61–69 (2002).

    Article  CAS  Google Scholar 

  27. D. Xu, X. Cheng, X. Yan, H. Xu, and L. Shi, Trans. Nonferrous Met. Soc. China 19, 1526–1532 (2009).

    Article  CAS  Google Scholar 

  28. H.-I. Hsiang and J.-F. Chueh, Int. J. Appl. Ceram. Technol. 12, 1008–1015 (2015).

    Article  CAS  Google Scholar 

  29. B. Budiana and S. Suasmoro, The Influence of Co-sintering Bi2O3 on Yb0.2Ce0.8O2-δ Ceramic SOFC. in 030045 (2017). https://doi.org/10.1063/1.4968298.

  30. M.T. Sebastian and H. Jantunen,Int. Mater. Rev. 53, 57–90 (2008).

    Article  CAS  Google Scholar 

  31. C.A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2012).

  32. A. Petosa and A. Ittipiboon, IEEE Antennas Propag. Mag. 52, 91–116 (2010).

    Article  Google Scholar 

  33. D.V.M. Paiva, M.A.S. Silva, A.S.B. Sombra, and P.B.A. Fechine, RSC Adv. 6, 42502–42509 (2016).

    Article  CAS  Google Scholar 

  34. P.M.O. Silva, T.S.M. Fernandes, R.M.G. Oliveira, M.A.S. Silva, and A.S.B. Sombra, Mater. Sci. Eng. B 182, 37–44 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CNPq (402045/2013-0), the US Air Force Office of Scientific Research (AFOSR) (FA9550-16-1-0127) and CNPq (Process: 402561/2007-4, Edital MCT/CNPq no 10/2007) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. O. Bezerra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezerra, J.W.O., Oliveira, R.G.M., Silva, M.A.S. et al. Dielectric Resonator Antennas with Frequency Stability Under Severe Temperature Variations Based on Li2MgTi3O8 Ceramic Matrix Added with Bi2O3. J. Electron. Mater. 47, 7272–7280 (2018). https://doi.org/10.1007/s11664-018-6664-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6664-0

Keywords

Navigation