Skip to main content
Log in

WOWS Sol–Gel Based Synthesis and Structural, Morphological, Electrical and Magnetic Characterization of Co-Sm Doped M-Type Barium Hexaferrite Materials

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cobalt-samarium (Co-Sm) doped M-type barium hexaferrite nanocrystalline materials (BaFe12-2ZCoZSmZO19) of various compositions (Z = 0.0, 0.2, 0.4, 0.6) were prepared via without water and surfactants (WOWS) sol–gel approach. X-ray diffraction (XRD) studies were employed to elucidate the structural properties. For each composition, the porosity, theoretical density, crystallite size and lattice constant were obtained from XRD data. The dielectric parameters were measured by LCR meter. A scanning electron microscope (SEM) was used to investigate the morphology of materials. DC electrical resistivity (ρdc) calculations were performed in a broad range of temperature (from 100°C to 400°C). The activation energy (ΔE) was also calculated from electrical resistivity data. The vibrating-sample magnetometer studies were employed to investigate hysteresis loops and magnetic properties were estimated from hysteresis curves. It was observed that the materials were of high magnetocrystalline anisotropy, large Curie temperature, high value of magnetization and excellent dielectric characteristics. The XRD spectrum analysis of materials disclosed that the structure of materials was hexagonal. The SEM investigations revealed that the materials are uniform in both shape and size, with a normal size ranged from 295 nm to 440 nm. Electrical resistivity of materials disclosed their dependence on the temperature, which suggests the semiconducting nature of M-type hexaferrites. The magnetic characteristics were evaluated at 25°C and they showed typical hysteresis loop demonstrating ferromagnetic nature of the compounds. The results of Sm3+ and Co2+ ions substitution expose the large values of coercivity (Hc), which indicates the nanocrystalline nature of the materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.B. Narang and I.S. Hudiara, J. Ceram. Process. Res. 7, 113 (2006).

    Google Scholar 

  2. P. Shepherd, K.K. Mallick, and R.J. Green, J. Magn. Magn. Mater. 311, 683 (2007).

    Article  CAS  Google Scholar 

  3. P. Thakuria, Magnetic structure in relation to the magnetic feld induced ferroelectricity in Y-type hexaferrite Ba 2−x Sr x Zn 2 Fe 12 O 22, 1st ed. (Aachen: RWTH Aachen University, 2017).

    Google Scholar 

  4. T. Kristiantoro, N. Sudrajat, and W. Budiawan, J. Fis. Dan Apl. 9, 9 (2013).

    Google Scholar 

  5. K.S. Martirosyan, E. Galstyan, S.M. Hossain, Y.J. Wang, and D. Litvinov, Mater. Sci. Eng. B 176, 8 (2011).

    Article  CAS  Google Scholar 

  6. K. Sadhana, K. Praveena, S. Matteppanavar, and B. Angadi, Appl. Nanosci. 2, 247 (2012).

    Article  CAS  Google Scholar 

  7. K. Samikannu, J. Sinnappan, S. Mannarswamy, T. Cinnasamy, and K. Thirunavukarasu, Mater. Sci. Appl. 2, 638 (2011).

    CAS  Google Scholar 

  8. S. Chang, Int. J. Mod. Sci. Technol. 4, 110 (2015).

    Google Scholar 

  9. W.Y. Zhao, Q.J. Zhang, X.F. Tang, H.B. Cheng, and P.C. Zhai, J. Appl. Phys. 99, 08E909 (2006).

    Article  Google Scholar 

  10. B.S. Gill and P.G. Sharma, Effect of the particle size on the magnetic properties of barium hexaferrite bonded magnets, Doctoral dissertation (Thapar Institute of Engineering and Technology, 2012). http://hdl.handle.net/10266/1971

  11. F.X.N.M. Kools and D. Stoppels, Kirk–Othmer Encyclopedia of Chemical Technology, 4th Edn. vol. 10, (New York: Wiley Interscience, 1993), pp. 381–413.

  12. D. Autissier, A. Podembski, and C. Jacquiod, J. Phys. IV 7, 409 (1997).

    Google Scholar 

  13. H. Pfeiffer, R.W. Chantrell, P. Görnert, W. Schüppel, E. Sinn, and M. Rösler, J. Magn. Magn. Mater. 125, 373 (1993).

    Article  CAS  Google Scholar 

  14. J. Smit and H.P.J. Wijn, Ferrites (Eindhoven: Philips Technical Library, 1961).

    Google Scholar 

  15. W. Buchner, R. Schliebs, G. Winter, and K.H. Buchel, Industrial Inorganic Chemistry, 1st ed. (Weinheim: VCH Verlagsge sellschaft, 1989), p. 145.

    Google Scholar 

  16. H.M. Sung, C.J. Chen, W.S. Ko, and H.C. Lin, IEEE Trans. Magn. 30, 4906 (1984).

    Article  Google Scholar 

  17. V.V. Atuchin, D.A. Vinnik, T.A. Gavrilova, S.A. Gudkova, L.I. Isaenko, X. Jiang, L.D. Pokrovsky, I.P. Prosvirin, L.S. Mashkovtseva, and Z. Lin, J. Phys. Chem. C 120, 5114 (2016).

    Article  CAS  Google Scholar 

  18. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, A.V. Trukhanov, D.I. Tishkevich, E.L. Trukhanova, T.I. Zubar, D.V. Karpinsky, V.G. Kostishyn, L.V. Panina, and D.A. Vinnik, J. Magn. Magn. Mater. 457, 83 (2018).

    Article  CAS  Google Scholar 

  19. D.A. Vinnik, D.S. Klygach, V.E. Zhivulin, A.I. Malkin, M.G. Vakhitov, S.A. Gudkova, D.M. Galimov, D.A. Zherebtsov, E.A. Trofimov, N.S. Knyazev, and V.V. Atuchin, J. Alloys Compd. 755, 177 (2018).

    Article  CAS  Google Scholar 

  20. H.G. Zhang, L.T. Li, Z.W. Ma, J. Zhou, Z.X. Yue, and Z.L. Gui, J. Magn. Magn. Mater. 218, 67 (2000).

    Article  CAS  Google Scholar 

  21. H. Mosallaei and K. Sarabandi, IEEE Trans Antennas Propag. 52, 1558 (2004).

    Article  Google Scholar 

  22. J.F. Wang, C.B. Ponton, and I.R. Harris, J. Magn. Magn. Mater. 298, 122 (2006).

    Article  CAS  Google Scholar 

  23. Y. Wang, Q. Li, C. Zhang, and B. Li, J. Alloys Compd. 467, 284 (2009).

    Article  CAS  Google Scholar 

  24. B.S. Zlatkova, M.V. Nikolicb, O. Aleksicb, H. Danningerc, and E. Halwax, J. Magn. Magn. Mater. 321, 330 (2009).

    Article  Google Scholar 

  25. H. Shang, J. Wang, and Q.F. Liu, Mater. Sci. Eng. A 456, 130 (2007).

    Article  Google Scholar 

  26. X. Liu, J. Wang, L.M. Ganb, and S.C. Ng, J. Magn. Magn. Mater. 195, 452 (1999).

    Article  CAS  Google Scholar 

  27. O. Shimizu, T. Harasawa, and H. Noguchi, Advanced magnetic tape technology for linear tape systems: barium ferrite technology beyond the limitation of metal particulate media, in 30th Symposium on Mass Storage Systems and Technologies (MSST), Santa Clara, CA, USA, 1–6 (2014). https://doi.org/10.1109/msst.2014.6855556.

  28. W. Li, X. Qiao, M. Li, T. Liu, and H.X. Peng, Mater. Res. Bull. 48, 4449 (2013).

    Article  CAS  Google Scholar 

  29. J. Zhang, J. Fu, F. Li, E. Xie, D. Xue, N.J. Mellors, and Y. Peng, ACS Nano 6, 2273 (2012).

    Article  CAS  Google Scholar 

  30. S. Vinayasree, M.A. Soloman, V. Sunny, P. Mohanan, P. Kurian, P.A. Joy, and M.R. Anantharaman, J. Appl. Phys. 116, 024902 (2014).

    Article  Google Scholar 

  31. A.E. Ray and K. Strnat, Permanent magnet. U.S. Patent 3,677,947 (1972).

  32. A. Ray and K. Strnat, IEEE Trans. Magn. 8, 516 (1972).

    Article  CAS  Google Scholar 

  33. R.C. Pullar, Prog. Mater Sci. 57, 1191 (2012).

    Article  CAS  Google Scholar 

  34. M.F. Al-Hilli, S. Li, and K.S. Kassim, J. Magn. Magn. Mater. 324, 873 (2012).

    Article  CAS  Google Scholar 

  35. S. Thankachan, B.P. Jacob, S. Xavier, and E.M. Mohammed, J. Magn. Magn. Mater. 348, 140 (2013).

    Article  CAS  Google Scholar 

  36. R.P. Mahajan, K.K. Patankar, M.B. Kothale, and S.A. Patil, Bull. Mater. Sci. 23, 273 (2000).

    Article  CAS  Google Scholar 

  37. C. Suryanarayana, Bull. Mater. Sci. 17, 307 (1994).

    Article  CAS  Google Scholar 

  38. F.L.D.M.C. Adhikarya, Innovative Fields of Ball. App. Phy, 1st ed. (New Delhi: Allied Publishers, 2012).

    Google Scholar 

  39. A. Munir, F. Ahmed, M. Saqib, and M. Anis-ur-Rehman, J. Supercond. Nov. Magn. 28, 983 (2015).

    Article  CAS  Google Scholar 

  40. P. Shi, Z. Xia, M.S. Molokeev, and V.V. Atuchin, Dalton Trans. 43, 9669 (2014).

    Article  CAS  Google Scholar 

  41. C.S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov, and V. Atuchin, Phys. Chem. Chem. Phys. 17, 19278 (2015).

    Article  CAS  Google Scholar 

  42. C.S. Lim, A.S. Aleksandrovsky, M.S. Molokeev, A.S. Oreshonkov, and V.V. Atuchin, J. Alloys Compd. 713, 156 (2017).

    Article  CAS  Google Scholar 

  43. K.K. Mallick, P. Shepherd, and R.J. Green, J. Magn. Magn. Mater. 312, 418 (2007).

    Article  CAS  Google Scholar 

  44. S.K. Chawla, R.K. Mudsainiyan, S.S. Meena, and S.M. Yusuf, J. Magn. Magn. Mater. 350, 23 (2014).

    Article  CAS  Google Scholar 

  45. L. Zhao, H. Yang, X. Zhao, L. Yu, Y. Cui, and S. Feng, Mater. Lett. 60, 1 (2006).

    Article  CAS  Google Scholar 

  46. Z. Zi, Y. Sun, X. Zhu, Z. Yang, J. Dai, and W. Song, J. Magn. Magn. Mater. 321, 1251 (2009).

    Article  CAS  Google Scholar 

  47. J.Z. Domagalab, Cryst. Growth Des. 10, 3522 (2010).

    Article  Google Scholar 

  48. K. Rana, P. Thakur, A. Thakur, M. Tomar, V. Gupta, J.L. Mattei, and P. Queffelec, Ceram. Int. 42, 8413 (2016).

    Article  CAS  Google Scholar 

  49. T. Nedetzka, M. Reichle, A. Mayer, and H. Vogel, J. Phys. Chem. 74, 2652 (1970).

    Article  CAS  Google Scholar 

  50. T. Ruthradevi, J. Akbar, G.S. Kumar, A. Thamizhavel, G.A. Kumar, R.K. Vatsa, G.C. Dannangoda, K.S. Martirosyan, and E.K. Girija, J. Alloys Compd. 695, 3211 (2017).

    Article  CAS  Google Scholar 

  51. C.G. Koops, Phys. B Cond. Matter 83, 121 (1951).

    CAS  Google Scholar 

  52. M. Anis-ur-Rehman and M. Mubeen, Synth. Met. 162, 1769 (2012).

    Article  CAS  Google Scholar 

  53. M.T. Farid, I. Ahmad, S. Aman, M. Kanwal, G. Murtaza, I. Ali, I. Ahmad, and M. Ishfaq, Dig. J. Nanomater. Biostruct. 10, 265 (2015).

    Google Scholar 

  54. K.R. Mahmoud and M.R. Eraky, Braz. J. Phys. 46, 254 (2016).

    Article  CAS  Google Scholar 

  55. M.J. Iqbal and S. Farooq, J. Alloys Compd. 505, 560 (2010).

    Article  CAS  Google Scholar 

  56. M.J. Iqbal and S. Farooq, Mater. Sci. Eng. B 136, 140 (2007).

    Article  CAS  Google Scholar 

  57. M.J. Qbal, M.N. Ashiq, P. Hernandez-Gomez, and J.M. Munoz, Scr. Mater. 57, 1096 (2007).

    Google Scholar 

  58. X. Luo, J. Wang, M. Dooner, and J. Clarke, Appl. Energy 137, 511 (2015).

    Article  Google Scholar 

  59. S. Anjum, S. Hameed, M.S. Awan, E. Amed, and A. Sattar, Optik 131, 977 (2017).

    Article  CAS  Google Scholar 

  60. Q. Liqin, G. Minlin, W. Wenwei, O. Shiqian, W. Kaituo, L. Bang, and W. Xuehang, Ceram. Int. 40, 10857 (2014).

    Article  Google Scholar 

  61. M.F. Din, I. Ahmad, M. Ahmad, M.T. Farid, M.A. Iqbal, G. Murtaza, M.N. Akhtar, I. Shakir, M.F. Warsi, and M.A. Khan, J. Alloys Compd. 584, 646 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Higher Education Commission (HEC), Islamabad.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Faisal, Aamer Saeed or Fayaz Ali Larik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 304 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faisal, M., Saeed, A., Larik, F.A. et al. WOWS Sol–Gel Based Synthesis and Structural, Morphological, Electrical and Magnetic Characterization of Co-Sm Doped M-Type Barium Hexaferrite Materials. J. Electron. Mater. 47, 7011–7022 (2018). https://doi.org/10.1007/s11664-018-6628-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6628-4

Keywords

Navigation