Skip to main content
Log in

Optical Properties of ZnSe Nanocrystals (NCs) Prepared by Microwave Irradiation Method at Different pH and Different Irradiation Times

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Different parameters such as pH and microwave (MW) irradiation time (in MW-assisted synthesis methods) can affect the photo-physical properties of nano-materials via tuning the size of nanocrystals. In this research work, ZnSe semiconducting nanocrystals (NCs) were synthesized in aqueous medium at different pH. Growth of NCs was done employing microwave irradiation with the power of 1000 W at different irradiation times. According to the results of x-ray diffraction (XRD), no displacement was seen in the x-ray diffraction pattern peaks of ZnSe nanoparticles by altering the pH and microwave irradiation time. Generally, UV–Visible absorption spectra of the samples indicate that the increase of microwave irradiation time and the pH, resulted in the red shift of the absorption edge. The exact amount of the energy band gap of the nanoparticles was estimated by using the derivation of absorption spectrum fitting method (abbreviated as DASF) which was within the range of 3.488–3.721 eV depending on the pH and microwave irradiation time. Also, for the present NCs, using the values of energy gap, the optical charge carrier transition index (m) was evaluated, indicating crucially the direct gap nature. Depending to the microwave irradiation time, the size of the synthesized crystallites (obtained from XRD) were within the range of 1.74–2.18 nm and no general certain trend was founded against pH; employing the precise data of energy gap, effective mass approximation gives a reasonable increasing trend of NCs size with increasing pH except for pH = 12.2 Other purposes of this study are gaining the additional photo-physical properties of Urbach energy (Etail), dielectric constant (ε), and the refractive index (n).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.C.C. Souza, J.F.Q. Rey, and E.N.S. Muccillo, Appl. Surf. Sci. 255, 3779 (2009).

    Article  CAS  Google Scholar 

  2. X. Peng, L. Manna, W. Yang, and J. Wickham, Nature 404, 59 (2000).

    Article  CAS  Google Scholar 

  3. H. Yang and P.H. Holloway, J. Phys. Chem. B 107, 9705 (2003).

    Article  CAS  Google Scholar 

  4. M. Molaei, M. Marandi, E. Saievar-Iranizad, N. Taghavinia, B. Liu, H.D. Sun, and X.W. Sun, J. Lumin. 132, 467 (2012).

    Article  CAS  Google Scholar 

  5. M. Molaei, J. Lumin. 136, 38 (2013).

    Article  CAS  Google Scholar 

  6. P.O. Anikeeva, J.E. Halpert, M.G. Bawendi, and V. Bulovic, Nano Lett. 9, 2532 (2009).

    Article  CAS  Google Scholar 

  7. V. Wood, J.E. Halpert, M.J. Panzer, M.G. Bawendi, and V. Bulovic, Nano Lett. 9, 2367 (2009).

    Article  CAS  Google Scholar 

  8. N. Oraee, M. Molaei, and E.S. Iranizad, Mod. Phys. Lett. B 26, 1250171 (2012).

    Article  Google Scholar 

  9. N. Pradhan, D.M. Battaglia, Y. Liu, and X. Peng, Nano Lett. 7, 312 (2007).

    Article  CAS  Google Scholar 

  10. J. Han, H. Zhang, Y. Tang, Y. Liu, X. Yao, and B. Yang, J. Phys. Chem. C 113, 7503 (2009).

    Article  CAS  Google Scholar 

  11. P. Reiss, G. Quemard, S. Carayon, J. Bleuse, F. Chandezon, and A. Pron, Mater. Chem. Phys. 84, 10 (2004).

    Article  CAS  Google Scholar 

  12. R.S. Mane and C.D. Lokhande, Mater. Chem. Phys. 65, 1 (2000).

    Article  CAS  Google Scholar 

  13. G. Henshaw, I.P. Parkin, and G. Shaw, Chem. Commun. 10, 1095 (1996).

    Article  Google Scholar 

  14. A. Arafat and H. Robson, Synthesis of Microporous Materials,, Vol. 1 (New York: Van Nostrand Reinhold, 1992).

    Google Scholar 

  15. S. Komarneni, M.C. D’Arrigo, C. Leonelli, G.C. Pellacani, and H. Katsuki, J. Am. Ceram. Soc. 81, 3041 (1998).

    Article  CAS  Google Scholar 

  16. S. Komarneni, R.K. Rajha, and H. Katsuki, Mater. Chem. Phys. 61, 50 (1999).

    Article  CAS  Google Scholar 

  17. O. Palchik, R. Kerner, Z. Zhu, and A. Gedanken, J. Solid State Chem. 154, 530 (2000).

    Article  CAS  Google Scholar 

  18. J. Zhu, O. Palchik, S. Chen, and A. Gedanken, J. Phys. Chem. B 104, 7344 (2000).

    Article  CAS  Google Scholar 

  19. R. Kerner, O. Palchik, and A. Gedanken, Chem. Mater. 13, 1413 (2001).

    Article  CAS  Google Scholar 

  20. Y. He, H.T. Lu, L.M. Sai, Y.Y. Su, M. Hu, C.H. Fan, and L.H. Wang, Adv. Mater. 20, 3416 (2008).

    Article  CAS  Google Scholar 

  21. M. Molaei, E.S. Iranizad, M. Marandi, N. Taghavinia, and R. Amrollahi, Appl. Surf. Sci. 257, 9796 (2011).

    Article  CAS  Google Scholar 

  22. M. Molaei, A.R. Khezripour, and M. Karimipour, Appl. Surf. Sci. 317, 236 (2014).

    Article  CAS  Google Scholar 

  23. D. Souri, M. Sarfejou, and A.R. Khezripour, J. Mater. Sci. Mater. Electron. 29, 3411 (2018).

    Article  CAS  Google Scholar 

  24. L.F. Alexander, X-ray Diffraction Procedures for Crystalline and Amorphous Materials (New York: Wiley, 1954).

    Google Scholar 

  25. D. Souri and Z.E. Tahan, Appl. Phys. B 119, 273 (2015).

    Article  CAS  Google Scholar 

  26. D. Souri and K. Shomalian, J. Non-Cryst. Solids 355, 1597 (2009).

    Article  CAS  Google Scholar 

  27. D. Souri, Measurement 44, 717 (2011).

    Article  Google Scholar 

  28. D. Souri, M. Mohammadi, and H. Zaliani, Electron. Mater. Lett. 10, 1103 (2014).

    Article  CAS  Google Scholar 

  29. L. Escobar-Alarcón, A. Arrieta, E. Camps, S. Muhl, S. Rodil, and E. Vigueras-Santiago, Appl. Surf. Sci. 254, 412 (2007).

    Article  Google Scholar 

  30. D. Souri and S.A. Salehizadeh, J. Mater. Sci. 44, 5800 (2009).

    Article  CAS  Google Scholar 

  31. N. Chopra, A. Mansingh, and G.K. Chadha, J. Non-Cryst. Solids 126, 194–201 (1990).

    Article  CAS  Google Scholar 

  32. G. Turky and M. Dawy, Mater. Chem. Phys. 77, 48 (2003).

    Article  CAS  Google Scholar 

  33. D.T.F. Marple, J. Appl. Phys. 35, 1879 (1964).

    Article  CAS  Google Scholar 

  34. G.C. Vatankhah and A. Ebadi, Res. J. Rec. Sci. 2, 21 (2013).

    CAS  Google Scholar 

  35. M.B. Muradov, Int. J. Nanopart. 1, 78–84 (2008).

    Article  Google Scholar 

  36. A.K. Singh, V. Viswanath, and V.C. Janu, J. Lumin. 129, 874 (2009).

    Article  CAS  Google Scholar 

  37. J. Tauc, A. Menth, and J. Non-Cryst, Solids 8, 569 (1972).

    Google Scholar 

  38. V. Dimitrov and S. Sakka, J. Appl. Phys. 79, 1736 (1996).

    Article  CAS  Google Scholar 

  39. S. Adachi and T. Taguchi, Phys. Rev. B 43, 9569 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Souri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souri, D., Ahmadian, K. & Khezripour, A.R. Optical Properties of ZnSe Nanocrystals (NCs) Prepared by Microwave Irradiation Method at Different pH and Different Irradiation Times. J. Electron. Mater. 47, 6759–6766 (2018). https://doi.org/10.1007/s11664-018-6592-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6592-z

Keywords

Navigation