Skip to main content
Log in

Piezoelectric, Dielectric and Ferroelectric Properties of (1−x)(K0.48Na0.52)0.95Li0.05Nb0.95Sb0.05O3-xBa0.5(Bi0.5Na0.5)0.5ZrO3 Lead-Free Solid Solution

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The lead-free solid solution \( (1-x) \)(K0.48Na0.52)0.95Li0.05Nb0.95Sb0.05O3-xBa0.5(Bi0.5Na0.5)0.5ZrO3 [KNLNS-xBBNZ] with 0.02 < x < 0.05 was successfully prepared by a conventional solid-state route. The effect of BBNZ on the KNLNS phase structure, microstructure and electrical properties was investigated. X-ray diffraction patterns demonstrated a single-phase perovskite-type structure and for 0.02 < x < 0.03 a rhombohedral–tetragonal (RT) phase coexistence. In addition, the average crystal size greatly decreased with BBNZ doping. Furthermore, the piezoelectric and ferroelectric properties of the KNLNS-xBBNZ ceramics were enhanced at x = 0.02 (\( d_{33} \) = 292 pC/N, \( - \;d_{31} \) = 100 pC/N, \( k_{\rm{p}} \) = 48%, \( \varepsilon_{\rm{r}} \) = 5876, \( \tan \delta \) = 0.03) due to a high polarizability at a local level. For x = 0.02, the solid solution showed good thermal stability of the \( d_{33} \) piezoelectric constant. As a result, this lead-free solid solution holds potential for applications in electric generators and high-temperature sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Jiang, Y. Li, J. Xing, J. Wu, Q. Chen, H. Liu, D. Xiao, and J. Zhu, Ceram. Int. 43, 2100 (2017).

    Article  Google Scholar 

  2. W. Wu, M. Chen, B. Wu, Y. Ding, and C. Liu, J. Alloys Compd. 695, 1175 (2017).

    Article  Google Scholar 

  3. X. Wang, J. Wu, X. Cheng, B. Zhang, D. Xiao, J. Zhu, X. Wang, and X. Lou, J. Phys. D Appl. Phys. 46, 495305 (2013).

    Article  Google Scholar 

  4. R. Zuo, X. Fang, and C. Ye, Appl. Phys. Lett. 90, 092904 (2007).

    Article  Google Scholar 

  5. B. Wu, H. Wu, J. Wu, D. Xiao, J. Zhu, and S.J. Pennycook, J. Am. Chem. Soc. 138, 15459 (2016).

    Article  Google Scholar 

  6. K. Zhang, Y. Guo, D. Pan, H. Duan, Y. Chen, H. Li, and H. Liu, J. Alloys Compd. 664, 503 (2016).

    Article  Google Scholar 

  7. X. Tang, T. Chen, Y. Liu, J. Zhang, T. Zhang, G. Wang, and J. Zhou, J. Alloys Compd. 672, 277 (2016).

    Article  Google Scholar 

  8. F. Rubio-Marcos, R. López-Juárez, R.E. Rojas-Hernández, A. del Campo, N. Razo-Pérez, and J.F. Fernandez, ACS Appl. Mater. Interfaces. 7, 23080 (2015).

    Article  Google Scholar 

  9. K. Yoshida, K. Kakimoto, M. Weiß, S.J. Rupitsch, and R. Lerch, Jpn. J. Appl. Phys. 55, 10TD02 (2016).

    Article  Google Scholar 

  10. X. Chen, G. Liu, G. Huang, X. Li, X. Yan, and H. Zhou, J. Mater. Sci. Mater. Electron. 28, 13126 (2017).

    Article  Google Scholar 

  11. Y. Shiratori, A. Magrez, and C. Pithan, J. Eur. Ceram. Soc. 25, 2075 (2005).

    Article  Google Scholar 

  12. D.Q. Zang, Z.C. Qin, X.Y. Yang, H.B. Zhu, and M.S. Cao, J. Sol-Gel. Sci. Technol. 57, 31 (2011).

    Article  Google Scholar 

  13. N. Liu, K. Wang, J.F. Li, and Z. Liu, J. Am. Ceram. Soc. 92, 1884 (2009).

    Article  Google Scholar 

  14. J.H. Lv, M. Zhang, M. Guo, W.C. Li, and X.D. Wang, Int. J. Appl. Ceram. Technol. 4, 571 (2007).

    Article  Google Scholar 

  15. R. López-Juárez, R. Castañeda-Guzmán, and M.E. Villafuerte-Castrejón, Ceram. Int. 40, 14757 (2014).

    Article  Google Scholar 

  16. W. Wu, M. Chen, B. Wu, Y. Ding, and C. Liu, J. Alloys Compd. 695, 2981 (2017).

    Article  Google Scholar 

  17. Y. Zhao, Z. Xu, H. Li, J. Hao, J. Du, R. Chu, D. Wei, and G. Li, J. Electron. Mater. 46, 116 (2017).

    Article  Google Scholar 

  18. I. Kanno, T. Ichida, K. Adachi, H. Kotera, K. Shibata, and T. Mishima, Sens. Actuator A Phys. 179, 132 (2012).

    Article  Google Scholar 

  19. K.H. Lam, X.X. Wang, and H.L.W. Chan, Sens. Actuator A Phys. 125, 393 (2006).

    Article  Google Scholar 

  20. A.G. Akyurekli, M. Gurbuz, M. Gul, H. Gulec, and A. Dogan, in International Workshop on Acoustic Transduction Materials and Devices & Workshop on Piezoresponse Force Microscopy, Joint IEEE International Symposium on the Applications of Ferroelectric, 2014.

  21. E. Sapper, A. Gassmann, L. Gjødvad, W. Jo, T. Granzow, and J. Rödel, J. Eur. Ceram. Soc. 34, 653 (2014).

    Article  Google Scholar 

  22. S.L. Yang, S.M. Chen, C.C. Tsai, C.S. Hong, and S.Y. Chu, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 408 (2013).

    Article  Google Scholar 

  23. C. Alemany, A.M. González, L. Pardo, B. Jiménez, F. Carmona, and J. Mendiola, J. Phys. D Appl. Phys. 28, 945 (1995).

    Article  Google Scholar 

  24. D. Lin, K.W. Kwok, and H.L.W. Chan, J. Appl. Phys. 102, 034102 (2007).

    Article  Google Scholar 

  25. T.A. Skidmore and S.J. Milne, J. Mater. Res. 22, 2265 (2007).

    Article  Google Scholar 

  26. R. López-Juárez, F. González-García, J. Zárate-Medina, R. Escalona-González, S. Díaz de la Torre, and M.E. Villafuerte-Castrejón, J. Alloys Compd. 509, 3837 (2011).

    Article  Google Scholar 

  27. B. Wu, J. Wu, D. Xiao, and J. Zhu, Dalton Trans. 44, 21141 (2015).

    Article  Google Scholar 

  28. W. Wu, M. Chen, J. Li, Y. Ding, and C. Liu, J. Alloys Compd. 670, 128 (2016).

    Article  Google Scholar 

  29. J. Kim and J.H. Koh, Ceram. Int. 43, S92 (2017).

    Article  Google Scholar 

  30. B. Zhang, X. Wang, X. Cheng, J. Zhu, D. Xiao, and J. Wu, J. Alloys Compd. 581, 446 (2013).

    Article  Google Scholar 

  31. H. Li, W.Y. Shih, and W.H. Shih, J. Am. Ceram. Soc. 90, 3070 (2007).

    Article  Google Scholar 

  32. D.W. Wu, R.M. Chen, Q.F. Zhou, K.K. Shung, D.M. Lin, and H.L.W. Chan, Ultrasonics 49, 395 (2009).

    Article  Google Scholar 

  33. A. Reyes-Montero, L. Pardo, R. López-Juárez, A.M. González, S.O. Rea-López, M.P. Cruz, and M.E. Villafuerte-Castrejón, Smart Mater. Struct. 24, 065033 (2015).

    Article  Google Scholar 

  34. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

  35. A. Reyes-Montero, P. Ramos-Alvarez, A.M. González, R. López-Juárez, and M.E. Villafuerte-Castrejón, Appl. Sci. 7, 214 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

B. Carreño-Jiménez gratefully thanks CONACyT-México for providing a M.Sc. scholarship. The authors thank Omar Novelo (IIM-UNAM) and Neftalí Razo (ENES-Morelia) for SEM images and technical assistance, respectively. Also, to Federico González García and LDRX (T-128) UAM-I for XRD measurements. M. E. Villafuerte-Castrejón gratefully acknowledges PAPIIT-UNAM (IN109018) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rigoberto López-Juárez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carreño-Jiménez, B., Reyes-Montero, A., Villafuerte-Castrejón, M.E. et al. Piezoelectric, Dielectric and Ferroelectric Properties of (1−x)(K0.48Na0.52)0.95Li0.05Nb0.95Sb0.05O3-xBa0.5(Bi0.5Na0.5)0.5ZrO3 Lead-Free Solid Solution. J. Electron. Mater. 47, 6053–6058 (2018). https://doi.org/10.1007/s11664-018-6488-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6488-y

Keywords

Navigation