Skip to main content
Log in

Studies of Interfacial Microstructures and Series Resistance on Electroplated and Hot-Dipped Sn-xCu Photovoltaic Modules

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The present study applied molten Sn-xCu (x = 0.3, 0.7, 2.5, and 5.0 wt.%) alloy solders to a photovoltaic (PV) ribbon. A hot-dipped Sn-0.7Cu PV ribbon reflowed on a Si solar cell had the lowest series resistance of the tested module (Cu/Solder/Ag). After biasing for 72 h, the rapid growth of intermetallic compounds (IMCs) (Cu6Sn5, Ag3Sn) caused the series resistance of the module to increase by 52%. To improve the performance of the PV module, an electroplated PV ribbon was used in place of the hot-dipped one. The required solder thickness for the electroplated ribbon was one third that for hot-dipped ribbon. Applying less solder to a PV ribbon avoids the overgrowth of IMCs and thus enhances module conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Cuddalorepatta, A. Dasgupta, S. Sealing, J. Moyer, T. Tolliver, and J. Loman, Prog. Photovolt: Res. Appl. 18, 168 (2010).

    Article  Google Scholar 

  2. R.J. Handy, Solid-State Electron. 10, 765 (1967).

    Article  Google Scholar 

  3. K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, Sol. Energy Mater. Sol. Cells 90, 1308 (2006).

    Article  Google Scholar 

  4. S. Choi, T.R. Bieler, J.P. Lucas, and K.N. Subramanian, J. Electron. Mater. 28, 1209 (1999).

    Article  Google Scholar 

  5. K.J. Chen, F.Y. Hung, T.S. Lui, L.H. Chen, D.W. Qiu, and T.L. Chou, Microelectron. Eng. 116, 33 (2014).

    Article  Google Scholar 

  6. K.S. Kim, S.H. Huh, and K. Suganuma, J. Alloy. Compound. 352, 226 (2003).

    Article  Google Scholar 

  7. X. Deng, G. Piotrowski, J.J. Williams, and N. Chnwla, J. Electron. Mater. 32, 1403 (2003).

    Article  Google Scholar 

  8. C.M. Chen and S.W. Chen, J. Electron. Mater. 28, 902 (1999).

    Article  Google Scholar 

  9. F.Y. Hung, H.M. Lin, P.S. Chen, T.S. Lui, and L.H. Chen, J. Alloy. Compound. 415, 85 (2006).

    Article  Google Scholar 

  10. K. Zeng and K.N. Tu, Mater. Sci. Eng., R 38, 55 (2002).

    Article  Google Scholar 

  11. J.W. Yoon, S.W. Kim, J.M. Koo, D.G. Kim, and S.B. Jung, J. Electron. Mater. 33, 1190 (2004).

    Article  Google Scholar 

  12. K.S. Bae, S.J. Kim, and J. Mater, Res. 17, 743 (2011).

    Google Scholar 

  13. J.W. Yoon and S.B. Jung, J. Alloy. Compound. 396, 122 (2005).

    Article  Google Scholar 

  14. H. Zou, Q. Zhu, and Z. Zhang, J. Alloy. Compound. 461, 410 (2008).

    Article  Google Scholar 

  15. M. Sadeghi, M. Enferadi, M. Aboudzadeh, and P. Sarabadani, J. Radioanal. Nucl. Chem. 287, 585 (2011).

    Article  Google Scholar 

  16. K.J. Chen, F.Y. Hung, T.S. Lui, L.H. Chen, and Y.W. Chen, Sol. Energy Mater. Sol. Cell. 143, 561 (2015).

    Article  Google Scholar 

  17. Y.G. Lee and J.G. Duh, Mater. Charact. 42, 143 (1999).

    Article  Google Scholar 

  18. W.T. Chen, C.E. Ho, and C.R. Kao, J. Mater. Res. 17, 263 (2011).

    Article  Google Scholar 

  19. N. Saunders and A.P. Miodownik, Bull. Alloy Phase Diagr. 11, 278 (1990).

    Article  Google Scholar 

  20. M. Tan, B. Xiufang, X. Xianying, Z. Yanning, G. Jing, and S. Baoan, Phys. B 387, 1 (2007).

    Article  Google Scholar 

  21. N. Zhao, X.M. Pan, D.Q. Yu, H.T. Ma, and L. Wang, J. Electron. Mater. 38, 828 (2009).

    Article  Google Scholar 

  22. J. Shen, Y.C. Liu, H.X. Gao, C. Wei, and Y.Q. Yang, J. Electron. Mater. 34, 1591 (2005).

    Article  Google Scholar 

  23. M.S. Park and R. Arroyave, J. Electron. Mater. 39, 2574 (2010).

    Article  Google Scholar 

  24. P.L. Rossiter, The electrical resistivity of metals and alloys, London, UK, 1991.

  25. Y. Tian, Q.M. Zhang, and Z.Q. Li, Solid State Commun. 151, 1496 (2011).

    Article  Google Scholar 

  26. T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng., R 49, 1 (2005).

    Article  Google Scholar 

  27. P. Shewmon, Diffusion in Solids, Chap. 7 (TMS, Warrendale, PA, 1989).

Download references

Acknowledgements

The authors acknowledge Dr. Kuan-Jen Chen for assistance in technical services (SIMS) by Ministry of Science and Technology (MOST) Instrument Center of National Cheng Kung University (NCKU) and MOST, Taiwan for financially supporting this study under Grant No. MOST 105-2628-E-006-001-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei-Yi Hung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, KJ., Hung, FY., Lui, TS. et al. Studies of Interfacial Microstructures and Series Resistance on Electroplated and Hot-Dipped Sn-xCu Photovoltaic Modules. J. Electron. Mater. 47, 6028–6035 (2018). https://doi.org/10.1007/s11664-018-6483-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6483-3

Keywords

Navigation