Skip to main content
Log in

Cu2ZnSnS4 Thin Films by Dip Coating from Metal-Thiourea Precursor Solution: Effect of Sulphurization Temperature on the Formation and Structural, Optical and Electrical Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A process for fabrication of kesterite-based Cu2ZnSnS4 (CZTS) thin films from metal-thiourea precursor solution by dip coating is described. As deposited CZTS films were sulphurized at different temperatures to study the effects of sulphurization temperature on structural, optical and electrical properties. Formation of tetragonal CZTS phase was confirmed by x-ray diffraction; phase purity of the films was further studied by Raman spectroscopy. The studies revealed phase pure crystal structure for the films sulphurized at 500°C and 550°C. Larger crystallite size was observed for films sulphurized at 550°C. Scanning electron microscopy studies showed uniform distribution of particles in the film sulphurized at 550°C, and the determined thickness of the films was ∼ 2 μm. Energy dispersive x-ray spectroscopy analysis revealed the effect of sulphurization temperature on elemental compositions of the films. Optical studies suggest that CZTS thin film sulphurized at 550°C has high absorption coefficient (105 cm−1) with an optical energy band gap of 1.43 eV. P-type nature of the films was confirmed from Hall Effect analysis. Carrier concentration, mobility and resistivity of the films sulphurized at 550°C were also calculated. The study optimized fabrication conditions for device quality CZTS thin films from metal-thiourea precursor solution by simple dip coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Zeng, K.F. Tai, T. Zhang, C.W. Ho, X. Chen, A. Huan, T. Sum, and L.H. Wong, Sol. Energy Mater. Sol. Cells 124, 55 (2014).

    Article  Google Scholar 

  2. H. Yoo and J. Kim, Sol. Energy Mater. Sol. Cells. 95, 239 (2011).

    Article  Google Scholar 

  3. T.K. Todorov, K.B. Reuter, and D.B. Mitzi, Adv. Mater. 25, 22 (2010).

    Google Scholar 

  4. K. Tanaka, N. Moritake, M. Oonuki, and H. Uchiki, Jpn. J. Appl. Phys. 47, 598 (2008).

    Article  Google Scholar 

  5. P. Prabeesh, I.P. Selvam, and S.N. Potty, Thin Solid Films 606, 94 (2016).

    Article  Google Scholar 

  6. Y. Sun, K. Zong, H. Zheng, H. Wang, J. Liu, H. Yan, and M. Zhu, Mater. Lett. 92, 195 (2013).

    Article  Google Scholar 

  7. J. Ge, J. Chu, J. Jiang, Y. Yan, and P. Yang, ACS Sustain. Chem. Eng. 3, 3043 (2015).

    Article  Google Scholar 

  8. P. Prabeesh, P. Saritha, I.P. Selvam, and S.N. Potty, Mater. Res. Bull. 86, 295 (2017).

    Article  Google Scholar 

  9. S. Siebentritt, Thin Solid Films 535, 1 (2013).

    Article  Google Scholar 

  10. K. Patel, V. Kheraj, D.V. Shah, C.J. Panchal, and N.G. Dhere, J. Alloys Compd. 663, 842 (2016).

    Article  Google Scholar 

  11. D. Dumcenco and Y.S. Huang, Opt. Mater. 35, 419 (2013).

    Article  Google Scholar 

  12. A. Khare, B. Himmetoglu, M. Johnson, D.J. Norris, M. Cococcioni, and E.S. Aydil, J. Appl. Phys. 111, 083707 (2012).

    Article  Google Scholar 

  13. S. Kermadi, S. Sali, F.A. Ameur, L. Zougar, M. Boumaour, A. Toumiat, N.N. Melnik, D.W. Hewak, and A. Duta, Mater. Chem. Phys. 169, 96 (2016).

    Article  Google Scholar 

  14. P.A. Fernandes, P.M. Salomé, and A.F. Cunha, J. Alloys Compd. 509, 7600 (2011).

    Article  Google Scholar 

  15. X. Fontané, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodriguez, J.R. Morante, D.M. Berg, P.J. Dale, and S. Siebentritt, Appl. Phys. Lett. 98, 181905 (2011).

    Article  Google Scholar 

  16. W.G. Nilsen, Phys. Rev. 182, 838 (1969).

    Article  Google Scholar 

  17. Hyesun Yoo and JunHo Kim, Sol. Energy Mater. Sol. Cells 95, 239 (2011).

    Article  Google Scholar 

  18. A.E. Rakhshani and S. Thomas, J. Electron. Mater. 44, 4760 (2015).

    Article  Google Scholar 

  19. K. Wang, O. Gunawan, T. Todorov, B. Shin, S.J. Chey, N.A. Bojarczuk, D. Mitzi, and S. Guha, Appl. Phys. Lett. 97, 143508 (2010).

    Article  Google Scholar 

  20. H. Guan, H. Shen, C. Gao, and X. He, J. Mater. Sci. Mater. Electron. 24, 2667 (2013).

    Article  Google Scholar 

  21. M. Dhanasekar and S.V. Bhat, Appl. Surf. Sci. 418, 194 (2016).

    Article  Google Scholar 

  22. B. Long, S. Cheng, Q. Zheng, J. Yu, and H. Jia, Mater. Res. Bull. 73, 140 (2016).

    Article  Google Scholar 

  23. R.M. Patil, D.R. Nagapure, G.S. Mary, G.H. Chandra, M.A. Sunil, Y.V. Subbaiah, P. Prathap, M. Gupta, and R.P. Rao, J. Mater. Sci. Mater. Electron. 28, 18244 (2017).

    Article  Google Scholar 

  24. P. Kevin, M.A. Malik, and P. O’Brien, J. Mater. Chem. C. 3, 5733 (2015).

    Article  Google Scholar 

  25. G.G. Silvena, B. John, R.A. Christinal, M.S. Kumar, S. Chakravarty, and A.L. Rajesh, J. Inorg. Organomet. Polym Mater. 27, 1556 (2017).

    Article  Google Scholar 

  26. F. Aslan, A. Goktaş, and A. Tumbul, Mater. Sci. Semicond. Process. 43, 139 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Potty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabeesh, P., Vysakh, K.V., Selvam, I.P. et al. Cu2ZnSnS4 Thin Films by Dip Coating from Metal-Thiourea Precursor Solution: Effect of Sulphurization Temperature on the Formation and Structural, Optical and Electrical Properties. J. Electron. Mater. 47, 5396–5402 (2018). https://doi.org/10.1007/s11664-018-6438-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6438-8

Keywords

Navigation