Skip to main content
Log in

Passivation Effect and Stability of Diamond-Like Carbon Film on CdZnTe Devices

  • Topical Collection: 18TH INTERNATIONAL CONFERENCE ON II-VI COMPOUNDS
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Leakage currents of a CdZnTe (CZT) detector are desired to be as low as possible for a better signal-to-noise ratio in the acquisition of x-ray/gamma-ray spectra. Surface passivation plays a major role in reduction of the surface leakage current and thereby improves the detector performance. In this paper, diamond-like carbon (DLC) film has been introduced as the passivation layer for a CZT detector. Passivation effect and stability of the DLC film on CZT devices have been investigated by the Raman spectrum, x-ray photoelectron spectroscopy (XPS), atomicforce microscopy (AFM) and current–voltage characteristic. High-quality DLC films were effectively fabricated on CZT devices measured by the Raman spectrum. The XPS in-depth profiling of CZT passivated with DLC film demonstrated that no interface reaction occurred, and DLC effectively prevented the oxidation reaction to produce the state Te4+ in Te3d spectra. Moreover, the surface leakage current evidently dropped after the DLC film passivation. In addition, properties of the DLC films with different thickness were investigated. It was shown that the effect of this passivation over stability with time is not perfect and an optimum thickness of the DLC film is proposed for reaching the best stability for CZT devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Takahashi and S. Watanabe, IEEE Trans. Nucl. Sci. 48, 950 (2001).

    Article  Google Scholar 

  2. C. Szeles, Phys. Status Solidi 241, 783 (2004).

    Article  Google Scholar 

  3. X.B. Xing, J.H. Min, X.Y. Liang, J.J. Zhang, L.J. Wang, Q. Yang, Y.P. Ling, L. Duan, and Y. Shen, J. Cryst. Growth 426, 270 (2015).

    Article  Google Scholar 

  4. H. Chen, J. Tong, Z. Hu, D.T. Shi, G.H. Wu, K.T. Chen, M.A. George, W.E. Collins, and A. Burger, J. Appl. Phys. 80, 3509 (1996).

    Article  Google Scholar 

  5. Y. Ling, J. Min, X. Liang, J. Zhang, L. Yang, Y. Zhang, M. Li, Z. Liu, and L. Wang, J. Appl. Phys. 121, 034502 (2017).

    Article  Google Scholar 

  6. M.C. Duff, D.B. Hunter, A. Burger, M. Groza, V. Buliga, and D.R. Black, Appl. Surf. Sci. 254, 2889 (2008).

    Article  Google Scholar 

  7. K.-T. Chen, D.T. Shi, H. Chen, B. Granderson, M.A. George, W.E. Collins, and A. Burger, J. Vac. Sci. Technol. Vac. Surf. Films 15, 850 (1997).

    Article  Google Scholar 

  8. K. Chattopadhyay, M. Hayes, and J.O. Ndap, J. Electron. Mater. 29, 708 (2000).

    Article  Google Scholar 

  9. G.W. Wright, R.B. James, D. Chinn, B.A. Brunett, R.W. Olsen, J.M. Van Scyoc, W. Miles Clift, A. Burger, K. Chattopadhyay, D.T. Shi, and R.C. Wingfield, Proc. SPIE Int. Soc. Opt. Eng. 6, e20651 (2000).

    Google Scholar 

  10. W. Kunshu, S. Wenbin, M. Jiahua, T. Jianyong, Z. Qi, X. Jun, and Q. Yongbiao, Chin. J. Semicond. 26, 1475 (2005).

    Google Scholar 

  11. J. Zázvorka, J. Franc, M. Statelov, J. Pekárek, M. Veis, P. Moravec, and K. Masek, Appl. Surf. Sci. 389, 1214 (2016).

    Article  Google Scholar 

  12. Jakub Pekarek, Eduard Belas, and Jakub Zazvorka, J. Electron. Mater. 46, 1996 (2017).

    Article  Google Scholar 

  13. M.J. Mescher, T.E. Schlesinger, J.E. Toney, B.A. Brunett, and R.B. James, J. Electron. Mater. 28, 700 (1999).

    Article  Google Scholar 

  14. T.H. Prettyman, M.A. Hoffbauer, J.A. Rennie, S. Cooka, J.C. Gregoryb, M.A. Georgeb, P.N. Lukec, M. Ammanc, S.A. Soldnerd, and J.R. Earnharta, Nucl. Instrum. Methods Phys. Res. 422, 179 (1998).

    Article  Google Scholar 

  15. A.V. Rybka, S.A. Leonov, I.M. Prokhoretz, A.S. Abyzov, L.N. Davydov, V.E. Kutny, M.S. Rowland, and C.F. Smith, Nucl. Instrum. Methods Phys. Res. 458, 248 (2001).

    Article  Google Scholar 

  16. W. Sang, J. Ju, W. Shi, Y. Qian, L. Wang, Y. Xia, W. Wu, J. Fang, Y. Li, J. Zhao, and H. Gong, J. Cryst. Growth 214–215, 265 (2000).

    Article  Google Scholar 

  17. Y. Fan, J. Jianhua, W. Zhang, Y. Xia, Z. Wang, Z. Fang, and L. Wang, Solid State Commun. 120, 435 (2001).

    Article  Google Scholar 

  18. S Wenbin, J Wei, Z Qi, M Jiahua, Z Minglong, T Jianyong, and Q Yongbiao, in Proceeding of High Density Microsystem Design and Packaging and Component Failure Analysis, HDP’04, 377 (2004).

  19. W. Jin, W.-B. Sang, W.-W. Li, Y.-L. Ge, J.-H. Min, and M.-L. Zhang, J. Funct. Mater. 35, 467 (2004).

    Google Scholar 

  20. Z.J. Zhang, K. Narumi, H. Naramoto, Z.P. Wu, S. Yamamoto, and A. Miyashita, J. Phys.: Condens. Matter 11, L273 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-yan Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, Jh., Liang, Xy., Liu, Zx. et al. Passivation Effect and Stability of Diamond-Like Carbon Film on CdZnTe Devices. J. Electron. Mater. 47, 4388–4393 (2018). https://doi.org/10.1007/s11664-018-6371-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6371-x

Keywords

Navigation