Skip to main content
Log in

Modification of Light Emission in Si-Rich Silicon Nitride Films Versus Stoichiometry and Excitation Light Energy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Si-rich SiN x films with different stoichiometry were grown on Si substrate by plasma-enhanced chemical vapor deposition. The Si content was varied by changing the NH3/SiH4 gas flow ratio from 0.45 up to 1.0. Conventional furnace annealing at 1100°C for 30 min was applied to produce the Si quantum dots (QDs) in the SiN x films. Spectroscopic ellipsometry was used to determine the refractive index of the SiN x films that allowed estimating the film's stoichiometry. Fourier transform infrared spectroscopy has been also used to confirm the stoichiometry and microstructure. Photoluminescence (PL) spectra of Si-rich SiN x films are complex. A non-monotonous variation of the different PL peaks versus Si excess contents testifies to the competition of different radiative channels. The analysis of PL spectra, measured at the different excitation light energies and variable temperatures, has revealed that the PL bands with the peaks within the range 2.1–3.0 eV are related to the carrier recombination via radiative native defects in the SiN x host. Simultaneously, the PL bands with the peaks at 1.5–2.0 eV are caused by the exciton recombination in the Si QDs of different sizes. The way to control the SiN x emission is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.Y. Kim, N.M. Park, K.H. Kim, G.Y. Sunga, Y.W. Ok, T.Y. Seong, and C.J. Choi, Appl. Phys. Lett. 85, 5355 (2004).

    Article  Google Scholar 

  2. G.Y. Sung, N.M. Park, J.H. Shin, K.H. Kim, T.Y. Kim, K.S. Cho, and C. Huh, IEEE J. Sel. Top. Quant. Elect. 12, 1545 (2006).

    Article  Google Scholar 

  3. N.M. Park, C.J. Choi, T.Y. Seong, and S.J. Park, Phys. Rev. Lett. 86, 1355 (2001).

    Article  Google Scholar 

  4. L. Dal Negro, J.H. Yi, V. Nguyen, Y. Yi, J. Michel, and L.C. Kimerling, Appl. Phys. Lett. 86, 261905 (2005).

    Article  Google Scholar 

  5. T.V. Torchynska, J.L. Casas, E. Espinola, L.V. Hernandez, F.D. Khomenkova, and A. Slaoui, Thin Solid Films 581, 65 (2015).

    Article  Google Scholar 

  6. T.V. Torchynska, J.L. Casas Espinola, L. Khomenkova, V.E. Hernandez, J.A. Andraca Adame, and A. Slaoui, Mater. Sci. Semicond. Proc. 37, 46 (2015).

    Article  Google Scholar 

  7. J. Kistner, X. Chen, Y. Weng, H.P. Strunk, and M.B. Schubert, J. Appl. Phys. 110, 023520 (2011).

    Article  Google Scholar 

  8. X. Zeng, W. Liao, G. Wen, X. Wen, and W. Zheng, J. Appl. Phys. 115, 154314 (2014).

    Article  Google Scholar 

  9. M. Wang, D. Li, Zh Yuan, D. Yang, and D. Que, Appl. Phys. Lett. 90, 131903 (2007).

    Article  Google Scholar 

  10. Y.Q. Wang, Y.G. Wang, L. Cao, and Z.X. Cao, Appl. Phys. Lett. 83, 3474 (2003).

    Article  Google Scholar 

  11. B.H. Kim, C.H. Cho, T.W. Kim, N.M. Park, and S.J. Park, Appl. Phys. Lett. 86, 091908 (2005).

    Article  Google Scholar 

  12. T.W. Kim, C.H. Cho, B.H. Kim, and S.J. Park, Appl. Phys. Lett. 88, 123102 (2006).

    Article  Google Scholar 

  13. L. Dal Negro, J.H. Yi, L.C. Kimerling, S. Hamel, A. Williamson, and G. Galli, Appl. Phys. Lett. 88, 183103 (2006).

    Article  Google Scholar 

  14. H.L. Hao, L.K. Wu, and W.Z. Shen, Appl. Phys. Lett. 92, 121922 (2008).

    Article  Google Scholar 

  15. A. Rodriguez, J. Arenas, and J.C. Alonso, J. Lumin. 132, 2385 (2012).

    Article  Google Scholar 

  16. H. Kato, N. Kashio, Y. Ohki, K.S. Seol, and T. Noma, J. Appl. Phys. 93, 239 (2003).

    Article  Google Scholar 

  17. M. Molinari, H. Rinnert, and M. Vergnat, J. Appl. Phys. 101, 123532 (2007).

    Article  Google Scholar 

  18. M. Anutgan, T. Anutgan, I. Atilgan, and B. Katircioglu, J. Lumin. 131, 1305 (2011).

    Article  Google Scholar 

  19. A. Rodriguez-Gómez, A. García-Valenzuela, E. Haro-Poniatowski, and J.C. Alonso-Huitrón, J. Appl. Phys. 113, 233102 (2013).

    Article  Google Scholar 

  20. F. Delachat, Elaboration and characterization of Si-licon nanoparticles in silicon nitride for photovoltaic application. in Ph.D. Thesis, InESS-University of Strasbourg, Strasbourg, France (2010)

  21. Spectroscopic Ellipsometry Solutions for Thin Film Analysis, HORIBA Scientific, http://www.horiba.com/scientific/products/ellipsometers/

  22. T. Torchynska, G. Polupan, L. Khomenkova, and A. Slaoui, MRS Communications 7, 280 (2017).

    Article  Google Scholar 

  23. N.E. Korsunskaya, T.V. Torchynska, LYu Khomenkova, B.R. Dzhumaev, and S.M. Prokes, Microelectr Eng 51–52, 485 (2000).

    Article  Google Scholar 

  24. F. Delachat, M. Carrada, G. Ferblantier, J.-J. Grob, and A. Slaoui, Nanotechnology 20, 415608 (2009).

    Article  Google Scholar 

  25. A.-S. Keita, A. En Naciri, F. Delachat, M. Carrada, G. Ferblantier, and A. Slaoui, J. Appl. Phys. 107, 093516 (2010).

    Article  Google Scholar 

  26. L. Khomenkova, J. Cardin, X. Portier, and F. Gourbilleau, Nanotechnology 21, 285707 (2010).

    Article  Google Scholar 

  27. D.A.G. Bruggeman, Ann. Phys. 416, 636 (1935).

    Article  Google Scholar 

  28. A.R. Forouhi and I. Bloomer, Phys Rev B 34, 7018 (1986).

    Article  Google Scholar 

  29. G.E. Jelisson Jr and F.A. Modine, Appl. Phys. Lett. 69, 371 (1996).

    Article  Google Scholar 

  30. H. Mackel and R. Ludemann, J. Appl. Phys. 92, 2602 (2001).

    Article  Google Scholar 

  31. K. Luke, Y. Okawachi, M.R.E. Lamont, A.L. Gaeta, and M. Lipson, Opt. Lett. 40, 4823 (2015).

    Article  Google Scholar 

  32. D.V. Tsu, G. Lucovsky, and M.J. Mantini, Phys. Rev. B 33, 7069 (1986).

    Article  Google Scholar 

  33. G. Scardera, T. Puzzer, I. Perez-Wurfl, and G. Conibeer, J. Cryst. Growth 310, 3680 (2008).

    Article  Google Scholar 

  34. S.V. Deshpande, E. Gulari, S.W. Brown, and S.C. Rand, J. Appl. Phys. 77, 6534 (1995).

    Article  Google Scholar 

  35. W.I. Warren, P.M. Lenahan, and S.E. Curry, Phys. Rev. Lett. 65, 207 (1990).

    Article  Google Scholar 

  36. B. Sain and D. Das, Phys. Chem. Chem. Phys. 15, 3881 (2013).

    Article  Google Scholar 

  37. V. Alex, S. Finkbeiner, and J. Weber, J. Appl. Phys. 79, 6943 (1996).

    Article  Google Scholar 

  38. T.V. Torchynska, Nanocrystals and quantum dots. Some physical aspects, in Nanocrystals and Quantum Dots of Group IV Semiconductors, ed. by T.V. Torchynska, Yu. Vorobiev. American scientific publisher, Stevenson Ranch, CA, USA, 2010, p. 1

  39. C.H. Cho, B.H. Kim, T.W. Kim, S.J. Park, N.M. Park, and G.Y. Sung, Appl. Phys. Lett. 86, 143107 (2005).

    Article  Google Scholar 

  40. T.V. Torchynska, Phys. E 44, 56 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Torchynska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torchynska, T., Khomenkova, L. & Slaoui, A. Modification of Light Emission in Si-Rich Silicon Nitride Films Versus Stoichiometry and Excitation Light Energy. J. Electron. Mater. 47, 3927–3933 (2018). https://doi.org/10.1007/s11664-018-6271-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6271-0

Keywords

Navigation