Skip to main content
Log in

Fabrication and Characterization of Zinc Oxide/Multi-walled Carbon Nanotube Schottky Barrier Diodes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The interface between multi-walled carbon nanotubes and semiconductor material has important application in electronic and optoelectronic devices. This paper reports the Schottky diode characteristic of multi-walled carbon nanotube/zinc oxide (MWCNT/ZnO) interface. The ideality factor of the MWCNT/ZnO Schottky diode is 2.24 and the Schottky barrier height is 0.534 eV. A dramatic change in non-linear behaviour of the Schottky barrier interface is observed after annealing. The measured current–voltage characteristic shows rectifying behavior of ZnO-MWCNTs interface with an on-to-off ratio of 100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Georgakilas, J.A. Perman, J. Tucek, and R. Zboril, Chem. Rev. 115, 4744 (2015).

    Article  Google Scholar 

  2. C.M. Homenick, R. James, G.P. Lopinski, J. Dunford, J. Sun, H. Park, Y. Jung, G. Cho, and P.R.L. Malenfant, Appl. Mater. Interfaces 8, 27900 (2016).

    Article  Google Scholar 

  3. P.L. Taberna, P. Simon, and J.F. Fauvarque, J. Electrochem. Soc. 150, 292 (2003).

    Article  Google Scholar 

  4. D.Y. Cho, K. Eun, S.H. Choa, and H.K. Kim, Carbon 66, 530 (2014).

    Article  Google Scholar 

  5. V.H.R. Souza, E.G.C. Neiva, F.S. Lisboa, L.C. Lopes, R.V. Salvatierra, and A.J.G. Zarbin, Electrochim. Acta 197, 200 (2016).

    Article  Google Scholar 

  6. M. Nina, N. Hartmann, M.S. Hofmann, J. Janik, A. Högele, and A. Hartschuh, Nano Lett. 14, 3773 (2014).

    Article  Google Scholar 

  7. G.S. Tulevski, A.D. Franklin, D. Frank, J.M. Lobez, Q. Cao, H. Park, A. Afzali, S.J. Han, J.B. Hannon, and W. Haensch, ACS Nano 8, 8730 (2014).

    Article  Google Scholar 

  8. L. Zhang, Y. Jia, S. Wang, Z. Li, C. Ji, J. Wei, H. Zhu, K. Wang, D. Wu, E. Shi, Y. Fang, and A. Cao, Nano Lett. 10, 3583 (2010).

    Article  Google Scholar 

  9. J. Di, Z. Yong, X. Zheng, B. Sun, and Q. Li, Small 9, 1367 (2013).

    Article  Google Scholar 

  10. L. Aspitarte, D.R. McCulley, and E.D. Minot, Nano Lett. 16, 5589 (2016).

    Article  Google Scholar 

  11. T. Uchino, F. Shimpo, T. Kawashima, G.N. Ayre, D.C. Smith, C.H. de Groot, and P. Ashburn, Appl. Phys. Lett. 103, 193111 (2013).

    Article  Google Scholar 

  12. Y. An, H. Rao, G. Bosman, and A. Ural, J. Vac. Sci. Technol., B 30, 1071 (2012).

    Article  Google Scholar 

  13. H.M. Manohara, E.W. Wong, E. Schlecht, B.D. Hunt, and P.H. Siegel, Nano Lett. 5, 1469 (2005).

    Article  Google Scholar 

  14. A. Arena, N. Donatoa, G. Saittaa, S. Galvagnob, C. Miloneb, and A. Pistoneb, Microelectron. J. 39, 1659 (2008).

    Article  Google Scholar 

  15. C.W. Liang and S. Roth, Nano Lett. 8, 1809 (2008).

    Article  Google Scholar 

  16. C. Biswas, S.Y. Lee, T.H. Ly, A. Ghosh, Q.N. Dang, and Y.H. Lee, ACS Nano 5, 9817 (2011).

    Article  Google Scholar 

  17. J. Sethi, E. Sarlin, S.S. Meysami, R. Suihkonen, A.R.S.S. Kumar, M. Honkanen, P. Keinänen, N. Grobert, and J. Vuorinen, Compos. Part A Appl. Sci. Manuf. 102, 305 (2017).

    Article  Google Scholar 

  18. H. Zhu, C.X. Shan, B. Yao, B.H. Li, J.Y. Zhang, Z.Z. Zhang, D.X. Zhao, D.Z. Shen, X.W. Fan, Y.M. Lu, and Z.K. Tang, Adv. Mater. 21, 1613 (2009).

    Article  Google Scholar 

  19. P. Rauwel, M. Salumaa, A. Aasna, A. Galeckas, and E. Rauwel, J. Nanomater. 2016, 19 (2016).

    Article  Google Scholar 

  20. Y.M. Ho, W.T. Zheng, Y.A. Li, J.W. Liu, and J.L. Qi, J. Phys. Chem. C 112, 17702 (2008).

    Article  Google Scholar 

  21. D. Wei, Y. Liu, L. Cao, H. Zhang, L. Huang, and G. Yu, Chem. Mater. 22, 288 (2010).

    Article  Google Scholar 

  22. R. Sharma, A.K. Sharma, G. Sharma, and V. Sharma, J. Optoelectron. Adv. Mater. 17, 1728 (2015).

    Google Scholar 

  23. R. Sharma, A.K. Sharma, and V. Sharma, Cogent Eng. 2, 1094017 (2015).

    Article  Google Scholar 

  24. A.K. Sharma, R. Sharma, and U. Chaudhary, Fuller. Nanotub. Carbon Nanostruct. (2017). https://doi.org/10.1080/1536383X.2017.1320545.

    Google Scholar 

  25. A.K. Sharma, R. Sharma, R. Prajapati, and S. Chaudhary, Fuller. Nanotub. Carbon Nanostruct. 24, 332 (2016).

    Article  Google Scholar 

  26. T. Uchino, F. Shimpo, T. Kawashima, G.N. Ayre, D.C. Smith, C.H. de Groot, and P. Ashburn, Appl. Phys. Lett. 103, 193111 (2013).

    Article  Google Scholar 

  27. J.M. Harris, R.J. Headrick, M.R. Semler, J.A. Fagan, M. Pasquali, and E.K. Hobbie, Nanoscale 8, 7969 (2016).

    Article  Google Scholar 

  28. T.G. Kim, U.J. Kim, S.Y. Lee, Y.H. Lee, Y.S. Yu, S.W. Hwang, and S. Kim, IEEE Trans. Electron Dev. 61, 2203 (2014).

    Article  Google Scholar 

  29. L.J. Brillson and Y. Lu, J. Appl. Phys. 109, 121301 (2011).

    Article  Google Scholar 

  30. P.L. Ong, W.B. Euler, and I.A. Levitsky, Appl. Phys. Lett. 96, 033106 (2010).

    Article  Google Scholar 

  31. A. Hajibadali, M.B. Nejad, and G. Farzi, Braz. J. Phys. 45, 394 (2015).

    Article  Google Scholar 

  32. F.D. Nicola, M. Salvato, C. Cirillo, M. Crivellari, M. Boscardin, M. Scarselli, F. Nanni, I. Cacciotti, M.D. Crescenzi, and P. Castrucci, Carbon 101, 226 (2016).

    Article  Google Scholar 

  33. L.T. Singh, R.P. Sugavaneshwar, and K.K. Nanda, AIP Adv. 3, 082106 (2013).

    Article  Google Scholar 

  34. A. Kocyigit, I. Orak, İ. Karteri, and S. Uruş, Curr. Appl. Phys. 17, 1215 (2017).

    Article  Google Scholar 

  35. T.F. Zhang, Z.P. Li, J.Z. Wang, W.Y. Kong, G.A. Wu, Y.Z. Zheng, Y.W. Zhao, E.X. Yao, N.X. Zhuang, and L.B. Luo, Sci. Rep. 6, 38569 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The Malaviya National Institute of Technology (MNIT), Jaipur, is acknowledged for the support of the Materials Research Centre (MRC) in synthesis of CNTs using the TCVD method. The SEM, Raman and XRD characterizations were performed, and the IV characteristic determined, at the MRC Lab, MNIT, Jaipur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup Kumar Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A.K., Sharma, R. Fabrication and Characterization of Zinc Oxide/Multi-walled Carbon Nanotube Schottky Barrier Diodes. J. Electron. Mater. 47, 3037–3044 (2018). https://doi.org/10.1007/s11664-018-6170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6170-4

Keywords

Navigation