Skip to main content

Advertisement

Log in

Ab initio Study of Ag-Based Fluoroperovskite AgMF3 (M = Co and Ni) Compounds

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ab initio calculations of Ag-based fluoroperovskite AgMF3 (M = Co and Ni) compounds are investigated using the full-potential linearized augmented plane wave method. Wien2k and BoltzTrap codes are used to calculate the different physical properties. The structural parameters of the present compounds are within reasonable agreement with previous calculations. This study shows that AgCoF3 and AgNiF3 are anisotropic, ductile, mechanically and thermodynamically stable␣compounds, where AgCoF3 is found to be stiffer and less compressible than AgNiF3. The spin-polarized electronic band structure illustrates that AgCoF3 is metallic, while AgNiF3 is a semiconductor with indirect (M–Г) band gap energy of 0.43 eV. The bonding force between atoms is found to be mainly ionic with some covalent nature. The total magnetic moment of AgCoF3 (3.04 μ B) is found to be higher than that calculated for AgNiF3 (2.00 μ B). Using the magnetic susceptibility calculations, AgCoF3 is classified as antiferromagnetic, whereas AgNiF3 is a ferromagnetic compound. The calculated static refractive index of AgCoF3 (3.85) and AgNiF3 (3.60) is inversely proportional with the energy band gap. Suitable␣applications are predicted for AgCoF3 and AgNiF3 based on their absorption and reflection properties. Furthermore, beneficial thermoelectric applications are expected for the present compounds due to their large Seebeck coefficient (\( S_{{{\rm{AgCoF}}_{ 3} }} = 2.92 \times 10^{3} \,\, \mu {\hbox{V/K}}\,\,{\hbox{and}}\,\,\,S_{{{\rm{AgNiF}}_{3} }} = 2.84 \times 10^{3} \,\,\mu {\hbox{V/K}} \)) and their thermoelectric power factor with respect to relaxation time (\( S^{2} \sigma /t_{{AgNiF_{3} }} = 1.11 \times 10^{9} \,\,{\hbox{W/K}}^{ 2} \,\,{\hbox{and}}\,\,S^{2} \sigma /t_{{AgNiF_{3} }} = 1.28 \times 10^{11} \,\,{\hbox{W/K}}^{ 2} \)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hayatullah, S. Naeem, G. Murtaza, R. Khenata, and M.N. Khalid, Phys. B Condens. Matter 414, 91 (2013).

    Article  Google Scholar 

  2. A.A. Mubarak, Comput. Mater. Sci. 81, 478 (2014).

    Article  Google Scholar 

  3. A.A. Mubarak and S. Al-Omari, J. Magn. Magn. Mater. 382, 211 (2015).

    Article  Google Scholar 

  4. F. Zhang, Y. Mao, T.J. Park, and S.S. Wong, Adv. Funct. Mater. 18, 103 (2008).

    Article  Google Scholar 

  5. N. Takeshi, T. Noriaki, H. Hiroshi, K. Yoshiyuki, A.P. Dorota, S. Kiyoshi, and F. Tsuguo, Jpn. J. Appl. Phys. 41, L365 (2002).

    Article  Google Scholar 

  6. C. Dotzler, G.V.M. Williams, and A. Edgar, Curr. Appl. Phys. 8, 44 (2008).

    Article  Google Scholar 

  7. A.A. Mubarak and A.A. Mousa, Comput. Mater. Sci. 59, 6 (2012).

    Article  Google Scholar 

  8. R. Zeb, Z. Ali, I. Ahmad, and I. Khan, J. Magn. Magn. Mater. 388, 143 (2015).

    Article  Google Scholar 

  9. A. Oleaga, A. Salazar, and D. Skrzypek, J. Alloys Comput. 629, 178 (2015).

    Article  Google Scholar 

  10. M.W. Shafer, T.R. McGuire, B.E. Argyle, and G.J. Fan, Appl. Phys. Lett. 10, 202 (1967).

    Article  Google Scholar 

  11. R.M. Gluck, T.H. Lee, and F.T.J. Smith, Mater. Res. Bull. 9, 305 (1974).

    Article  Google Scholar 

  12. S. Korbel, M.A.L. Marques, and S. Botti, J. Mater. Chem. C 4, 3157 (2016).

    Article  Google Scholar 

  13. A.A. Mubarak, Mod. Phys. Lett. B 31, 1750033 (2017).

    Article  Google Scholar 

  14. L. Clark and P. Lightfoot, Magnetic Properties of Transition Metal Fluoride Perovskites, Photonic and Electronic Properties of Fluoride Materials (Boston: Elsevier, 2016).

    Google Scholar 

  15. Hayatullah, G. Murtaza, R. Khenata, S. Muhammad, A.H. Reshak, K.M. Wong, S. Bin Omran, and Z.A. Alahmed, Comput. Mater. Sci. 85, 402 (2014).

    Article  Google Scholar 

  16. F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, and M.G. Kanatzidis, Nat. Photonics 8, 489 (2014).

    Article  Google Scholar 

  17. N.G. Park, J. Phys. Chem. Lett. 4, 2423 (2013).

    Article  Google Scholar 

  18. G. Murtaza, G. Sadique, H.A. Rahnamaye Aliabad, M.N. Khalid, S. Naeem, A. Afaq, B. Amin, and I. Ahmad, Phys. B Condens. Matter 406, 4584 (2011).

    Article  Google Scholar 

  19. Z. Mazej, D. Kurzydłowski, and W. Grochala, Unique Silver(II) Fluorides: The Emerging Electronic and Magnetic Materials, Photonic and Electronic Properties of Fluoride Materials (Boston: Elsevier, 2016).

    Book  Google Scholar 

  20. P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas. Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  21. D.D. Koelling and B.N. Harmon, J. Phys. C: Solid State Phys. 10, 3107 (1977).

    Article  Google Scholar 

  22. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnika, and J. Luitz, WIEN2k (Austria: Technical Universität Wien, 2001).

    Google Scholar 

  23. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  24. P.E. Blöchl, O. Jepsen, and O.K. Andersen, Phys. Rev. B. 49, 16223 (1944).

    Article  Google Scholar 

  25. F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).

    Article  Google Scholar 

  26. C.M. Jamal. http://www.wien2k.at/reg_user/unsupported/2012.

  27. G.K.H. Madsen and D.J. Singh, Comput. Phys. Comm. 175, 67 (2006).

    Article  Google Scholar 

  28. X.J. Zhang, Y.X. Wang, and Y.L. Yan, J. Phys. Soc. Jpn. 82, 104706 (2013).

    Article  Google Scholar 

  29. A.A. Mubarak, Int. J. Mod. Phys. B 30, 1650141 (2016).

    Article  Google Scholar 

  30. L.Q. Jiang, J.K. Guo, H.B. Liu, M. Zhu, X. Zhou, P. Wu, and C.H. Li, J. Phys. Chem. Solids 67, 1531 (2016).

    Article  Google Scholar 

  31. R.L. Moreira and A. Dias, J. Phys. Chem. Solids 68, 1617 (2007).

    Article  Google Scholar 

  32. S. Hull and P. Berastegui, J. Phys.: Condens. Matter 10, 7945 (1998).

    Google Scholar 

  33. J.W. Stout and S.A. Reed, J. Am. Chem. Soc. 76, 5279 (1954).

    Article  Google Scholar 

  34. J. Feng, B. Xiao, C.L. Wan, Z.X. Qu, Z.C. Huang, J.C. Chen, R. Zhou, and W. Pan, Act. Mater. 59, 1742 (2011).

    Article  Google Scholar 

  35. V. Tvergaard and J.W. Hutchinson, J. Am. Ceram. Soc. 71, 157 (1988).

    Article  Google Scholar 

  36. W. Voigt, Lehrbuch der kristallphysik (Leipzig: B.G. Teubner, 1928).

    Google Scholar 

  37. A.A.A. Russ, Mater. Phys. 9, 49 (1929).

    Google Scholar 

  38. E. Schreiber, O.L. Anderson, and N. Soga, Elastic Constants and their Measurement (New York: McGraw-Hill, 1973).

    Google Scholar 

  39. D.G. Pettifor, Mater. Sci. Tech. 8, 345 (1992).

    Article  Google Scholar 

  40. F.F.V.I.N. Frantsevich and S.A. Bokuta, Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (Kiev: Naukova-Dumka, 1983).

    Google Scholar 

  41. S.F. Pugh, Lond Edinb Dublin Philos Mag J Sci 45, 823 (1954).

    Article  Google Scholar 

  42. O.L. Anderson, J. Phys. Chem. Solids 24, 909 (1963).

    Article  Google Scholar 

  43. A.P. Sakhya, J. Maibam, S. Saha, S. Chanda, A. Dutta, B.I. Sharma, R.K. Thapa, and T.P. Sinha, Indian J. Pure Appl. Phys. 53, 102 (2015).

    Google Scholar 

  44. M.E. Fine, L.D. Brown, and H.L. Marcus, Scr. Metall. 18, 951 (1984).

    Article  Google Scholar 

  45. F. Tran, P. Blaha, K. Schwarz, and P. Novák, Phys. Rev. B 74, 155108 (2006).

    Article  Google Scholar 

  46. S. Blundell, Magnetism in Condensed Matter (New York: Oxford University Press, 2001).

    Google Scholar 

  47. M. Fox, Optical Properties of Solids (Oxford: Oxford University Press, 2002).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (D-058-662-1438). The author, therefore, gratefully acknowledge the DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Mubarak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mubarak, A.A. Ab initio Study of Ag-Based Fluoroperovskite AgMF3 (M = Co and Ni) Compounds. J. Electron. Mater. 47, 887–898 (2018). https://doi.org/10.1007/s11664-017-5871-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5871-4

Keywords

Navigation