Skip to main content
Log in

Organic Light-Emitting Diodes with a Perylene Interlayer Between the Electrode–Organic Interface

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The performance of an organic light-emitting diode (OLED) with a vacuum-deposited perylene layer over a fluorine-doped tin oxide (FTO) surface is reported. To investigate the effect of the perylene layer on OLED performance, different thicknesses of perylene are deposited on the FTO surface and their current density–voltages (J–V), luminance–voltages (L–V) and device efficiency characteristics at their respective thickness are studied. Further analysis is carried out with an UV–visible light double-beam spectrophotometer unit, a four-probe resistivity unit and a field emission scanning electron microscope set up to study the optical transmittance, sheet resistance and surface morphology of the bilayer anode film. We used N,N′-bis(3-methyl phenyl)-N,N′(phenyl)-benzidine (TPD) as the hole transport layer, Tris(8-hydroxyquinolinato)aluminum (Alq3) as a light-emitting layer and lithium fluoride as an electron injection layer. The luminance efficiency of an OLED structure with a 9-nm-thick perylene interlayer is increased by 2.08 times that of the single-layer FTO anode OLED. The maximum value of current efficiency is found to be 5.25 cd/A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.W. Tang and S.A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987).

    Article  Google Scholar 

  2. I.D. Parker, J. Appl. Phys. Lett. 75, 1656 (1998).

    Google Scholar 

  3. C.C. Wu, C.I. Wu, and J.C. Sturm, Appl. Phys. Lett. 70, 1348 (1997).

    Article  Google Scholar 

  4. F. Nuesch, L.J. Rothberg, E.W. Forsythe, Q.T. Le, and Y.L. Gao, Appl. Phys. Lett. 74, 880 (1999).

    Article  Google Scholar 

  5. Z.B. Deng, X.M. Ding, and S.T. Lee, Appl. Phys. Lett. 74, 2227 (1999).

    Article  Google Scholar 

  6. L.S. Huang, C.W. Tang, and M.G. Mason, Appl. Phys. Lett. 70, 152 (1997).

    Article  Google Scholar 

  7. T. Mori, H. Fujikawa, S. Tokito, and Y. Taga, Appl. Phys. Lett. 73, 2763 (1998).

    Article  Google Scholar 

  8. S.T. Zhang, Y.C. Zhou, J.M. Zhou, Y.Q. Zhan, and Z.J. Wan, J. Appl. Phys. Lett. 89, 043502 (2006).

    Article  Google Scholar 

  9. A.K. Havare, M. Can, S. Demic, M. Kus, and S. Icli, Synth. Metal 161, 2734 (2011).

    Article  Google Scholar 

  10. A.R.V. Benvenho, P.M.J. Serbena, R. Lessmann, and A. Ivo Hummelgen, Braz. J. Phys. 35, 940 (2005).

    Article  Google Scholar 

  11. J. Li, L. Hu, J. Liu, L. Wang, and T.J. Marks, Appl. Phys. Lett. 93, 083306 (2008).

    Article  Google Scholar 

  12. L. Ke, S.J. Chua, K.R. Zhang, and N. Yakovlev, Appl. Phys. Lett. 80, 2195 (2002).

    Article  Google Scholar 

  13. F. Zhang, Z. Xu, S. Zhao, D. Zhao, G. Yuan, and Z. Cheng, Appl. Surf. Sci. 255, 1942 (2008).

    Article  Google Scholar 

  14. T. Borthakur and R. Sarma, Appl. Phys. A 123, 207 (2017).

    Article  Google Scholar 

  15. D. Saikia and R. Sarma, Mater. Sci. Indian J. 14, 103 (2016).

    Google Scholar 

  16. V. Michael, Fabrication of OLED on ITO and FTO-coated glass substrates, 35, P11287888 (2012)

  17. A.R. Schlatmann, W. Floet, A. Hilberer, F. Garten, P.J.M. Smulders, and T.M. Klapwijk, Appl. phys. Lett. 69, 1764 (1996).

    Article  Google Scholar 

  18. T. Kugler, Johansson, I. Dalsegg, V. Gelius, and W.R. Salaneck, Synth. Met. 91, 143 (1997).

    Article  Google Scholar 

  19. A. Andersson, N. Johansson, P. Broms, N. Yu, D. Lupo, and W.R. Salaneck, Adv. Mater. 10, 859 (1998).

    Article  Google Scholar 

  20. S.R. Jawalekar, in Proceedings of the Third International Workshop on Physics of Semiconductor Devices, (World Scientific, Singapore, 1985), p. 147

  21. L. Li, M. Guan, G. Cao, Y. Li, and Y. Zeng, Appl. Phys. A 99, 251 (2010).

    Article  Google Scholar 

  22. W.P. Hu, K. Manabe, T. Furukawa, and M. Matsumura, Appl. Phys. Lett. 80, 2638 (2002).

    Google Scholar 

  23. Z.B. Deng, X.M. Ding, L.S. Liao, X.Y. Hou, and S.T. Lee, Display 21, 323 (2000).

    Article  Google Scholar 

  24. J.S. Kim, P.K.H. Ho, N.C. Greenham, and R.H. Friend, J. Appl. Phys. 88, 1073 (2002).

    Article  Google Scholar 

  25. V. Bulovic, V.B. Khalfin, G. Gu, P.E. Burrouws, D.Z. Garbuzov, and S.R. Forrest, Phys. Rev. B Condens. Matter 58, 3730 (1998).

    Article  Google Scholar 

  26. H.H. Kim, E.H. Westerwick, Y.O. Kim, M.D. Morris, M. Cerullo, T.M. Miller, and E.W. Kwock, J. Lightwave Technol. 12, 2107 (1994).

    Article  Google Scholar 

  27. S.T. Zhang, X.M. Ding, J.M. Zhao, H.Z. Shi, J. He, Z.H. Xiong, and H.J. Ding, Appl. Phys. Lett. 84, 3 (2004).

    Google Scholar 

  28. X. Zhou, J. He, L.S. Liao, M. Lu, Z.H. Xiong, X.M. Ding, and X.Y. Hou, Appl. Phys. Lett. 74, 4 (1999).

    Article  Google Scholar 

  29. S.H. Jeong, S.B. Lee, and J.H. Boo, Curr. Appl. Phys. 4, 655 (2004).

    Article  Google Scholar 

  30. T.G. Kim and H.S. Oh, Trans. Electr. Electr. Mater. 11, 85 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhrubajyoti Saikia.

Ethics declarations

Conflict of interest

The author(s) declare(s) that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saikia, D., Sarma, R. Organic Light-Emitting Diodes with a Perylene Interlayer Between the Electrode–Organic Interface. J. Electron. Mater. 47, 737–743 (2018). https://doi.org/10.1007/s11664-017-5806-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5806-0

Keywords

Navigation