Skip to main content
Log in

Characterization of Co-existing In2O3-ZnO Nanostructures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, we report the simultaneous growth of both In2O3 and ZnO nanostructures on the same substrate when attempting to achieve heavily Zn-doped In2O3 nanowires with Zn. These oxide structures were synthesized by vapor–liquid–solid growth. Scanning electron microscope imaging and transmission electron microscopy shows the presence of nanostructures with different morphologies while energy-dispersive x-ray and x-ray photoelectron spectroscopy study confirms the elemental structure. Room-temperature photoluminescence (PL) study reveals the presence of oxygen vacancies and surface defects in the structures. Emission related to free and bound excitons as well as the donor–acceptor transitions were observed using temperature-dependent PL. Raman spectroscopy measurement using 442-nm non-resonant excitation sources shows the presence of four phonon modes associated with a cubic In2O3 lattice structure along with the observation of the dominant E high2 and quasi-longitudinal optical phonon modes associated with wurtzite ZnO. We find that the introduction of high zinc content results in the formation of ZnO nanowires in addition to the In2O3 nanowires, and not the formation of a highly doped In2O3 nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Singh, A. Ponzoni, E. Comini, and P.S. Lee, Sens. Actuators B 171, 244 (2012).

    Article  Google Scholar 

  2. W.F. Zhang, Z.B. He, G.D. Yuan, J.S. Jie, L.B. Luo, X.J. Zhang, Z.H. Chen, C.S. Lee, W.J. Zhang, and S.T. Lee, Appl. Phys. Lett. 94, 123103 (2009).

    Article  Google Scholar 

  3. J. Gao, R. Chen, D.H. Li, L. Jiang, J.C. Ye, X.C. Ma, X.D. Chen, Q.H. Xiong, H.D. Sun, and T. Wu, Nanotechnology 22, 195706 (2011).

    Article  Google Scholar 

  4. W. Zhang, J. Jie, Z. He, S. Tao, X. Fan, Y. Zhou, G. Yuan, L. Luo, W. Zhang, C.S. Lee, and S.T. Lee, Appl. Phys. Lett. 92, 153312 (2008).

    Article  Google Scholar 

  5. D.D. Edwards and T.O. Mason, J. Am. Ceram. Soc. 81, 3285 (1998).

    Article  Google Scholar 

  6. A. Ambrosini, S. Malo, K.R. Poeppelmeier, M.A. Lane, C.R. Kannewurf, and T.O. Mason, Chem. Mater. 14, 58 (2002).

    Article  Google Scholar 

  7. T. Moriga, D.D. Edwards, T.O. Mason, G.B. Palmer, K.R. Poeppelmeier, J.L. Schindler, C.R. Kannewurf, and I. Nakabayashi, J. Am. Ceram. Soc. 81, 1310 (1998).

    Article  Google Scholar 

  8. N. Singh, T. Zhang, and P.S. Lee, Nanotechnology 20, 195605 (2009).

    Article  Google Scholar 

  9. H.J. Fan, B. Fuhrmann, R. Scholz, C. Himcinschi, A. Berger, H. Leipner, A. Dadgar, A. Krost, S. Christiansen, U. Gösele, and M. Zacharias, Nanotechnology 17, S231 (2006).

    Article  Google Scholar 

  10. X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, and R. Liu, Sci. Rep. 4, 4596 (2014).

    Article  Google Scholar 

  11. J.H. Zheng, Q. Jiang, and J.S. Lian, Appl. Surf. Sci. 257, 5083 (2011).

    Article  Google Scholar 

  12. X.C. Wu, J.M. Hong, Z.J. Han, and Y.R. Tao, Chem. Phys. Lett. 373, 28 (2003).

    Article  Google Scholar 

  13. A. Walsh, J.L. Da Silva, S.H. Wei, C. Körber, A. Klein, L.F. Piper, A. DeMasi, K.E. Smith, G. Panaccione, P. Torelli, and D.J. Payne, Phys. Rev. Lett. 100, 167402 (2008).

    Article  Google Scholar 

  14. P. Gali, F.L. Kuo, N. Shepherd, and U. Philipose, Semicond. Sci. Technol. 27, 015015 (2012).

    Article  Google Scholar 

  15. S.K. Chong, S.N. Azizan, K.W. Chan, H.Q. Nguyen, W.S. Chiu, Z. Aspanut, C.F. Dee, and S.A. Rahman, Nanoscale Res. Lett. 8, 1 (2013).

    Article  Google Scholar 

  16. S. Farid, S. Mukherjee, K. Sarkar, M. Mazouchi, M.A. Stroscio, and M. Dutta, Appl. Phys. Lett. 108, 021106 (2016).

    Article  Google Scholar 

  17. B. Sen, M. Stroscio, and M. Dutta, J. Electron. Mater. 40, 2015 (2011).

    Article  Google Scholar 

  18. Z.M. Liao, H.Z. Zhang, Y.B. Zhou, J. Xu, J.M. Zhang, and D.P. Yu, Phys. Lett. A 372, 4505 (2008).

    Article  Google Scholar 

  19. J.D. Ye, S.L. Gu, F. Qin, S.M. Zhu, S.M. Liu, X. Zhou, W. Liu, L.Q. Hu, R. Zhang, Y. Shi, and Y.D. Zheng, Appl. Phys. A 81, 759 (2005).

    Article  Google Scholar 

  20. D.W. Hamby, D.A. Lucca, M.J. Klopfstein, and G. Cantwell, J. Appl. Phys. 93, 3214 (2003).

    Article  Google Scholar 

  21. B.R. Garcia-Domene, H.M. Ortiz, O. Gomis, J.A. Sans, F.J. Manjón, A. Muñoz, P. Rodríguez-Hernández, S.N. Achary, D. Errandonea, D. Martínez-García, and A.H. Romero, J. Appl. Phys. 112, 123511 (2012).

    Article  Google Scholar 

  22. C. Kranert, R. Schmidt-Grund, and M. Grundmann, Phys. Status Solidi Rapid Res. Lett. 8, 554 (2014).

    Article  Google Scholar 

  23. C.A. Arguello, D.L. Rousseau, and S.P.D.S. Porto, Phys. Rev. 181, 1351 (1969).

    Article  Google Scholar 

  24. R. Cuscó, E. Alarcón-Lladó, J. Ibanez, L. Artús, J. Jiménez, B. Wang, and M.J. Callahan, Phys. Rev. B 75, 165202 (2007).

    Article  Google Scholar 

  25. L. Bergman, M. Dutta, and R.J. Nemanich, Raman Scattering in Materials Science, vol. 273, ed. R. Merlin and W.H. Weber (Berlin: Springer-Verlag, 2000), pp. 273–313.

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Grant No. FA9550-15-1-0493 from the Air Force Office of Scientific Research. This work made use of instruments in the Electron Microscopy Service (Research Resources Center, UIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, K., Mukherjee, S., Farid, S. et al. Characterization of Co-existing In2O3-ZnO Nanostructures. J. Electron. Mater. 46, 5848–5854 (2017). https://doi.org/10.1007/s11664-017-5594-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5594-6

Keywords

Navigation