Skip to main content
Log in

Passive Cooling Enabled by Polymer Composite Coating: Dependence on Filler, Filler Size and Coating Thickness

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effective passive radiation cooling that is enabled by silicone-based composites is investigated for its dependence on coating thickness and filler size in the range of nanometers to micrometers. It is established, contrary to prior reports, that the effective passive radiation cooling does not exhibit a filler size dependence, i.e., there is no optimal size at which a maximum cooling would be reached. However, the apparent cooling effect is filler type dependent and among the fillers investigated, Al2O3 exhibits the best apparent cooling effect. In addition, the apparent cooling effect is dependent on coating thickness: the thickness dependence is non-monotonic, and the maximum cooling occurs at an optimal thickness of 70 μm, regardless of filler type. Potential significant implications of the findings are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.N. Suryawanshi, T. Kim, and C.T. Lin, Rev. Sci. Instrum. 81, 035105 (2010).

    Article  Google Scholar 

  2. M. Mauer, P. Kalenda, M. Honner, and P. Vacikova, J. Phys. Chem. Solids 73, 1550 (2012).

    Article  Google Scholar 

  3. A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, Nature 515, 540 (2014).

    Article  Google Scholar 

  4. J.A. Johnson, J.J. Heidenreich, R.A. Mantz, P.M. Baker, and M.S. Donley, Prog. Org. Coat. 47, 432 (2003).

    Article  Google Scholar 

  5. H.A. Babrekar, N.V. Kulkarni, J.P. Jog, V.L. Mathe, and S.V. Bhoraskar, Mater. Sci. Eng. B 168, 40 (2010).

    Article  Google Scholar 

  6. Y.P. Chen, G.Y. Xu, T.C. Guo, and N. Zhou, Sci. China Technol. Sci. 55, 623 (2012).

    Article  Google Scholar 

  7. H. Yu, G. Xu, X. Shen, X. Yan, C. Shao, and C. Hu, Prog. Org. Coat. 66, 161 (2009).

    Article  Google Scholar 

  8. M. Baneshi, S. Maruyama, H. Nakai, and A. Komiya, J. Quant. Spectrosc. Radiat. Trans. 110, 152 (2009).

    Article  Google Scholar 

  9. C.N. Suryawanshi, C.T. Lin, and A.C.S. Appl, Mater. Interfaces 1, 1334 (2009).

    Article  Google Scholar 

  10. T. Eyassu, T.J. Hsiao, K. Henderson, T. Kim, and C.T. Lin, Ind. Eng. Chem. Res. 53, 19550 (2014).

    Google Scholar 

  11. S.J. Yu, S.J. Youn, and H. Kim, Phys. B 405, 638 (2010).

    Article  Google Scholar 

  12. Y. Martynenko and L.I. Ognev, Tech. Phys. 50, 130 (2005).

    Article  Google Scholar 

  13. S. Zhang, X.Y. Cao, Y.M. Ma, Y.C. Ke, J.K. Zhang, and F.S. Wang, eXPRESS Polym. Lett. 5, 581 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Shi, F.G. Passive Cooling Enabled by Polymer Composite Coating: Dependence on Filler, Filler Size and Coating Thickness. J. Electron. Mater. 46, 4057–4061 (2017). https://doi.org/10.1007/s11664-017-5361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5361-8

Keywords

Navigation