Skip to main content
Log in

Probing the Thermodynamic and Magnetic Properties of UV-B-Emitting GdAlO3 Phosphors by ESR and Optical Techniques

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

GdAlO3 phosphor samples have been prepared by a solution combustion method. X-ray diffraction analysis revealed that the GdAlO3 phosphor stabilized in orthorhombic phase. The optical absorption spectrum showed bands due to Gd3+ ions as well as defect level in the host. The excitation spectrum exhibited a dominant band with maximum at 273 nm. Upon excitation at 273 nm, ultraviolet-B (UV-B) emission with maximum at 312 nm was observed from the undoped sample, being attributed to 6P7/2 → 8S7/2 transition of Gd3+ ion. The UV-B emission was enhanced at liquid-nitrogen temperature (77 K), most probably due to increased ground-state population according to the Boltzmann distribution law. Electron spin resonance spectra of samples at both room and liquid-nitrogen temperature exhibited resonance signals at g ≈ 2, attributed to Gd3+ ions arranged with octahedral symmetry linked via oxygen bridges. Various magnetic and thermodynamic parameters for the phosphor system were evaluated by standard procedures. Correlation of these values with the optical properties suggested that the GdAlO3 phosphor can be effectively used as an UV-B light source for industrial applications at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Watras, R. Pazik, and P.J. Deren, J. Lumin. 133, 35 (2013).

    Article  Google Scholar 

  2. N.L. Ross, J. Zhao, and R.J. Angel, J. Solid State Chem. 177, 3768 (2004).

    Article  Google Scholar 

  3. D. Petrov, M. Zamoryanskaya, K. Guliaeva, and V. Lovchinov, Optik 127, 107 (2016).

    Article  Google Scholar 

  4. M. Del Castillo-Mussot, D. Guenzburger, and J.S. Helman, J. Magn. Magn. Mater. 95, 154 (1991).

    Article  Google Scholar 

  5. A. Sinha, B.P. Sharma, and P. Gopalan, J. Alloys Compd. 536, 204 (2012).

    Article  Google Scholar 

  6. A. Sinha, B.P. Sharma, and P. Gopalan, Electrochim. Acta 51, 1184 (2006).

    Article  Google Scholar 

  7. Kh Dhahri, M. Bejar, E. Dhahri, M.J. Soares, M.F.P. Graça, and M.A. Sousa, Mater. Lett. 128, 235 (2014).

    Article  Google Scholar 

  8. P. Dorenbos, J.C. van’t Spijker, and C.W.E. van Eijk, in Proceedings of the International Conference on Inorganic Scintillators and Their Applications (1997).

  9. P.K. Jisha, R. Naik, S.C. Prashantha, H. Nagabhushana, S.C. Sharma, H.P. Nagaswarupa, K.S. Anantharaju, B. Daruka Prasad, and H.B. Premkumar, J. Lumin. 163, 47 (2015).

    Article  Google Scholar 

  10. X. Dong, X. Cui, Z. Fu, S. Zhou, S. Zhang, and Z. Dai, Mater. Res. Bull. 47, 212 (2012).

    Article  Google Scholar 

  11. Y. Liu, X. Tong, F. Lai, X. Chen, and W. You, Phys. B 406, 1272 (2011).

    Article  Google Scholar 

  12. X.L. Wang, Z. Yang, J. Li, W.F. Fu, P. Tang, Y.F. Chen, J. Guo, Z.H. Gao, Y. Huang, and Y. Tao, J. Alloys Compd. 614, 40 (2014).

    Article  Google Scholar 

  13. K. Upadhyay, R.K. Tamrakar, and V. Dubey, Superlattices Microstruct. 78, 116 (2015).

    Article  Google Scholar 

  14. G.S.R. Raju, J.Y. Park, H.C. Jung, B.K. Moon, J.H. Jeong, and J.H. Kim, Curr. Appl. Phys. 9, e92 (2009).

    Article  Google Scholar 

  15. H.H.S. Oliveira, M.A. Cebim, A.A. Da Silva, and M.R. Davolos, J. Alloys Compd. 488, 619 (2009).

    Article  Google Scholar 

  16. C. Michail, N. Kalyvas, I. Valais, S. David, I. Seferis, A. Toutountzis, A. Karabotsos, P. Liaparinos, G. Fountos, and I. Kandarakis, J. Lumin. 144, 45 (2013).

    Article  Google Scholar 

  17. A. Brenier, A.M. Jurdyc, H. Verweij, M.T. Cohen-Adad, and G. Boulon, Opt. Mater. 5, 233 (1996).

    Article  Google Scholar 

  18. W.L. Morison, Semin. Cutan. Med. Surg. 18, 297 (1999).

    Article  Google Scholar 

  19. M.F. Holick, Vitamin D, ed. D. Feldman, F.H. Glorieux, and J.W. Pike (San Diego: Academic, 1997), p. 33.

    Google Scholar 

  20. G.H. Dieke and L. Leopold, J. Opt. Soc. Am. 47, 944 (1957).

    Article  Google Scholar 

  21. P. Dorenbos, J. Lumin. 99, 283 (2002).

    Article  Google Scholar 

  22. H. Zhang, X. Fu, S. Niu, and Q. Xin, J. Lumin. 128, 1348 (2008).

    Article  Google Scholar 

  23. K. Binnemans, C. Görller-Walrand, and J.L. Adam, Chem. Phys. Lett. 280, 333 (1997).

    Article  Google Scholar 

  24. V. Singh, G. Sivaramaiah, J.L. Rao, and S.H. Kim, J. Lumin. 143, 162 (2013).

    Article  Google Scholar 

  25. V. Singh, G. Sivaramaiah, J.L. Rao, and S.H. Kim, Phys. B 416, 101 (2013).

    Article  Google Scholar 

  26. V. Singh, G. Sivaramaiah, J.L. Rao, and S.H. Kim, J. Lumin. 157, 82 (2015).

    Article  Google Scholar 

  27. E.J. Bosze, G.A. Hirata, L.E. Shea-Rohwer, and J. McKittrick, J. Lumin. 104, 47 (2003).

    Article  Google Scholar 

  28. J.A. Parrish and K.F. Jacnicke, J. Invest. Dermatol. 76, 359 (1981).

    Article  Google Scholar 

  29. E. Culea, L. Pop, and S. Simon, Mater. Sci. Eng. B 112, 59 (2004).

    Article  Google Scholar 

  30. R.S. Drago, in Physical Methods in Inorganic Chemistry, Chapter 10, Electron Paramagnetic Resonance Spectroscopy (Reinhold Publishing Corporation, New York; Chapman & Hall Ltd, London, 1965), p.328.

  31. T. Taurines and B. Boizot, J. Non-Cryst. Solids 357, 2723 (2011).

    Article  Google Scholar 

  32. J.A. Weil and J.R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications (New York: Wiley, 2007).

    Google Scholar 

  33. J.D. Cashion, A.H. Cooke, J.F.B. Hawkes, M.J.M. Leask, T.L. Thorp, and M.R. Wells, J. Appl. Phys. 39, 1360 (1968).

    Article  Google Scholar 

  34. J.D. Cashion, A.H. Cooke, T.L. Thorp, and M.R. Wells, Proc. R. Soc. A 318, 473 (1970).

    Article  Google Scholar 

  35. G. Sivaramaiah and Y. Pan, Phys. Chem. Miner. 39, 515 (2012).

    Article  Google Scholar 

  36. G. Sivaramaiah and J.L. Rao, Spectrochim. Acta Part A 98, 105 (2012).

    Article  Google Scholar 

  37. G. Sivaramaiah, J. Lin, and Y. Pan, Phys. Chem. Miner. 38, 159 (2011).

    Article  Google Scholar 

  38. A.J. Dekker, Solid State Physics (The Netherlands: Department of Electrical Engineering, University of Groningen, 2006).

    Google Scholar 

  39. N. Singh, V. Singh, G. Sivaramaiah, J.L. Rao, P.K. Singh, M.S. Pathak, S.J. Dhoble, and M. Mohapatra, J. Lumin. 178, 479 (2016).

    Article  Google Scholar 

  40. P.W. Anderson and P.R. Weiss, Rev. Mod. Phys. 25, 269 (1953).

    Article  Google Scholar 

  41. V. Singh, G. Sivaramaiah, J.L. Rao, and S.H. Kim, J. Lumin. 157, 74 (2015).

    Article  Google Scholar 

  42. C. Kittel, Introduction to Solid State Physics, 7th ed. (New York: Wiley, 1996).

    Google Scholar 

  43. D. Petrov, Appl. Phys. A 104, 1237 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Sivaramaiah, G., Mohapatra, M. et al. Probing the Thermodynamic and Magnetic Properties of UV-B-Emitting GdAlO3 Phosphors by ESR and Optical Techniques. J. Electron. Mater. 46, 1137–1144 (2017). https://doi.org/10.1007/s11664-016-5083-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5083-3

Keywords

Navigation