Skip to main content

Advertisement

Log in

Effect of Electric Field on CO2 Photoreduction by TiO2 Film

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

To mitigate the greenhouse effect, many studies have been carried out to improve the CO2 conversion efficiency of TiO2. Modification of TiO2 has been intensively investigated, but the influence of an electric field on photoreduction by this material remains largely unknown. Accordingly, in this study, we explored the effect of an electric field on the photoreduction process using a porous TiO2-Ti material. The results indicated that the CO yield improved 85-fold (equivalent to 4772 μmol/g h) when a 30-kV voltage was applied during the reduction process. To make the electric field effect fully functional, we also explored the effect of water on the photoreduction process, finding that TiO2 showed the highest conversion rate when the humidity was controlled at 50% relative humidity (RH).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U.A. Joshi, A. Palasyuk, D. Arney, and P.A. Maggard, J. Phys. Chem. Lett. 1, 2719 (2010).

    Article  Google Scholar 

  2. S.C. Roy, O.K. Varghese, M. Paulose, and C.A. Grimes, ACS Nano 4, 1259 (2010).

    Article  Google Scholar 

  3. G. Centi and S. Perathoner, ChemSusChem 3, 195 (2010).

    Article  Google Scholar 

  4. B.S. Kwak, K. Vignesh, N. Park, H. Ryu, J. Beak, and M. Kang, Fuel 143, 570 (2015).

    Article  Google Scholar 

  5. G.A. Gamal and M.I. Azad, J. Phys. Chem. Solids 66, 5 (2005).

    Article  Google Scholar 

  6. G. Marcì, E.I. García-López, and L. Palmisano, Catal. Commun. 53, 38 (2014).

    Article  Google Scholar 

  7. H. Yamashita, Y. Nishida, S. Yuan, K. Mori, M. Narisawa, Y. Matsumura, T. Ohmichi, and I. Katayama, Catal. Today 120, 163 (2007).

    Article  Google Scholar 

  8. K. Lv, J. Li, X. Qing, W. Li, and Q. Chen, J. Hazard. Mater. 189, 329 (2011).

    Article  Google Scholar 

  9. O. Ola and M.M. Maroto-Valer, J. Photochem. Photobiol. C 24, 16 (2015).

    Article  Google Scholar 

  10. J.C. Colmenares, R. Luque, J.M. Campelo, F. Colmenares, Z. Karpiński, and A.A. Romero, Materials 2, 2228 (2009).

    Article  Google Scholar 

  11. O. Ola and M.M. Maroto-Valer, Appl. Catal. A-Gen. 502, 114 (2015).

    Article  Google Scholar 

  12. S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, and W. Gernjak, Catal. Today 147, 1 (2009).

    Article  Google Scholar 

  13. L. Zhang, C.H. Ma, J. Wang, S.G. Li, and Y. Li, Russ. J. Phys. Chem. A 88, 2271 (2014).

    Article  Google Scholar 

  14. P. Zhang, X. Wu, T. Zhao, P. Hou, and L. Wen, J. Alloys Compd. 587, 511 (2014).

    Article  Google Scholar 

  15. C. Bilel, M.M. Habchi, A.B. Nasr, I. Guizani, A. Rebey, and B.E.I. Jani, Curr. Appl. Phys. 16, 340 (2016).

    Article  Google Scholar 

  16. L.C. Biedenharn, G.A. Rinker, and J.C. Solem, J. Opt. Soc. Am. B 6, 221 (1989).

    Article  Google Scholar 

  17. J.C. Solem, Found. Phys. 27, 1291 (1991).

    Article  Google Scholar 

  18. J.C. Solem, Am. J. Phys. 57, 278 (1989).

    Article  Google Scholar 

  19. L.C. Biedenharn, L.S. Brown, and J.C. Solem, Am. J. Phys. 56, 661 (1988).

    Article  Google Scholar 

  20. M. Courtney, N. Spellmeyer, H. Jiao, and D. Kleppner, Phys. Rev. A 51, 3604 (1995).

    Article  Google Scholar 

  21. A.J. Du, Z.H. Zhu, Y. Chen, G.Q. Lu, and S.C. Smith, Chem. Phys. Lett. 469, 183 (2009).

    Article  Google Scholar 

  22. L. Li, W. Li, A. Ji, Z. Wang, C. Zhu, L. Zhang, and L.F. Mao, Phys. Chem. Chem. Phys. 17, 17880 (2015).

    Article  Google Scholar 

  23. J.Z.Y. Tan, Q. Wang, D. Kong, Q. Li, J. Wang, H. He, and X. Zhang, Sol. Energy Mater. Sol. Cells 143, 275 (2015).

    Article  Google Scholar 

  24. K. Shirai, T. Sugimoto, K. Watanabe, M. Haruta, H. Kurata, and Y. Matsumoto, Nano Lett. 16, 1323 (2016).

    Article  Google Scholar 

  25. F.D. Mai, W.L. Lee, J.L. Chang, S.C. Liu, C.W. Wu, and C.C. Chen, J. Hazard. Mater. 177, 864 (2010).

    Article  Google Scholar 

  26. M.V. Dozzi, S. Marzorati, M. Longhi, M. Coduri, L. Artiglia, and E. Selli, Appl. Catal. B-Environ. 186, 157 (2016).

    Article  Google Scholar 

  27. W.N. Wang, W.J. An, B. Ramalingam, S. Mukherjee, D.M. Niedzwiedzki, S. Gangopadhyay, and P. Biswas, J. Am. Chem. Soc. 134, 11276 (2012).

    Article  Google Scholar 

  28. S. Zhou, Y. Liu, J. Li, Y. Wang, G. Jiang, Z. Zhao, D. Wang, A. Duan, J. Liu, and Y. Wei, Appl. Catal. B-Environ 158, 20 (2014).

    Article  Google Scholar 

  29. V.P. Indrakanti, J.D. Kubicki, and H.H. Schobert, Energy Environ. Sci. 2, 745 (2009).

    Article  Google Scholar 

  30. W.H. Koppenol and J.D. Rush, J. Phys. Chem. 91, 4429 (1987).

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Chinese National Natural Science Foundation (No. 50772098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiwen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Cheng, X., Dong, P. et al. Effect of Electric Field on CO2 Photoreduction by TiO2 Film. J. Electron. Mater. 46, 999–1004 (2017). https://doi.org/10.1007/s11664-016-5050-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5050-z

Keywords

Navigation