Skip to main content
Log in

Lead Sulfide Cathode for Quantum Dot Solar Cells: Electrosynthesis and Characterization

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Deposition of lead sulfide (PbS) nanocrystalline thin films onto conducting fluorine-doped tin oxide (FTO) glass has been performed by cyclic voltammetry (CV) in 1.5 mM solution of lead nitrate and sodium thiosulfate at 100 mV s−1 scan rate in the potential range of −1.0 V to 0.0 V versus saturated calomel electrode. X-ray diffraction analysis and scanning electron microscopy revealed formation of cubic PbS crystals with size of 100 nm to 150 nm after 50 cycles. High electrocatalytic activity of the synthesized PbS film for the S2−/S 2− n redox couple, used as a mediator for quantum dot solar cells (QDSCs), was demonstrated by electrochemical impedance spectroscopy and CV measurements. The prepared PbS/FTO was used as a counterelectrode to fabricate PbS-QDSCs with a photoanode consisting of CdS/CdSe quantum dots adsorbed on mesoporous TiO2 film and a polysulfide solution electrolyte. The performance of the PbS-QDSC was compared with a QDSC with a platinum counterelectrode (Pt-QDSC). It was found that, using the same fabrication conditions, the performance of the PbS-QDSC was better than that of the Pt-QDSC. At 1 sun (100 mW cm−2) simulated light, average energy conversion efficiency of 2.14%, short-circuit current of 9.22 mA cm−2, open-circuit potential of 0.50 V, and fill factor of 0.47 were achieved by the fabricated PbS-QDSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B.O. Regan and M. Grätzel, Nature 353, 737 (1991).

    Article  Google Scholar 

  2. Y.L. Lee, B.M. Huang, and H.T. Chien, Chem. Mater. 20, 6903 (2008).

    Article  Google Scholar 

  3. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P.V. Kamat, J. Am. Chem. Soc. 130, 4007 (2008).

    Article  Google Scholar 

  4. Z. Tachan, M. Shalom, I. Hod, S. Rühle, S. Tirosh, and A. Zaban, J. Phys. Chem. C 115, 6162 (2011).

    Article  Google Scholar 

  5. P.V. Kamat, J. Phys. Chem. C 112, 18737 (2008).

    Article  Google Scholar 

  6. S. Emin, S.P. Singh, L. Han, N. Satoh, and A. Islam, Sol. Energy 85, 1264 (2011).

    Article  Google Scholar 

  7. J.Y. Lin and J.H. Liao, J. Electrochem. Soc. 159, D65 (2012).

    Article  Google Scholar 

  8. T.H. Pham, M.L.P. Le, T.H. Nguyen, and T.P.T. Nguyen, J. Electrochem. Soc. 161, H235 (2014).

    Article  Google Scholar 

  9. S. Rühle, M. Shalom, and A. Zaban, Chem. Phys. Chem. 11, 2290 (2010).

    Google Scholar 

  10. Y. Tachibana, H.Y. Akiyama, Y. Ohtsuka, T. Torimoto, and S. Kuwabata, Chem. Lett. 36, 88 (2007).

    Article  Google Scholar 

  11. J.G. Radich, R. Dwyer, and P.V. Kamat, J. Phys. Chem. Lett. 2, 2453 (2011).

    Article  Google Scholar 

  12. V. Jovanovski, V. González-Pedro, S. Giménez, E. Azaceta, G. Cabañero, H. Grande, R. Tena-Zaera, I. Mora-Seró, and J. Bisquert, J. Am. Chem. Soc. 133, 20156 (2011).

    Article  Google Scholar 

  13. I. Mora-Seró, S. Giménez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gómez, and J. Bisquert, Nanotechnology 19, 424007 (2008).

    Article  Google Scholar 

  14. J. Puiso, S. Tamulevicius, G. Laukaitis, S. Lindroos, M. Leskelä, and V. Snitka, Thin Solid Films 403–404, 457 (2002).

    Article  Google Scholar 

  15. A. Aghassi, M. Jafarian, I. Danaee, F. Gobal, and M.G. Mahjani, J. Electroanal. Chem. 661, 265 (2011).

    Article  Google Scholar 

  16. Q. Wang, J.E. Moser, and M. Grätzel, J. Phys. Chem. B 109, 14945 (2005).

    Article  Google Scholar 

  17. T.H. Nguyen, M.H. Tran, and T.P.T. Nguyen, Electrochem. Soc. Trans. 50, 49 (2013).

    Google Scholar 

  18. T.H. Nguyen, T.H.H. Mai, T.P.T. Nguyen, and T. Lund, Electrochem. Soc. Trans. 16, 23 (2009).

    Google Scholar 

  19. Y. Noda, K. Masumoto, S. Ohba, Y. Saito, K. Toriumi, Y. Iwata, and I. Shibuya, Acta Crystallogr. C43, 1443 (1987).

  20. J.B. Zhang, F.Y. Zhao, G.S. Tang, and Y. Lin, J. Solid State Electrochem. 17, 2909 (2013).

    Article  Google Scholar 

  21. J.R. Macdonald and W.B. Johnson, Fundamentals of Impedance Spectroscopy (Hoboken: Wiley, 2005), pp. 83–86.

    Google Scholar 

Download references

Acknowledgements

Financial support from the Vietnam National University, Ho Chi Minh City for Project HS2015-18-01 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoang Thai Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Le, N., Nguyen, H.T., Le, H.V. et al. Lead Sulfide Cathode for Quantum Dot Solar Cells: Electrosynthesis and Characterization. J. Electron. Mater. 46, 274–281 (2017). https://doi.org/10.1007/s11664-016-4844-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4844-3

Keywords

Navigation