Skip to main content
Log in

Fabrication of Al-Doped ZnO Film with High Conductivity Induced by Photocatalytic Activity

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have fabricated Al-doped ZnO films by a spin-spray method, achieving high conductivity by Al-ion doping and photocatalytic activity of the ZnO. The surface morphology of the as-deposited films was varied by changing the Al concentration and addition of citrate ions. As-deposited Al-doped ZnO film without citrate ions showed rod array structure with increasing rod width as the Al concentration was increased. Meanwhile, Al-doped ZnO film deposited with addition of citrate ions changed to exhibit dense and continuous surface morphology with high transmittance of 85%. The lowest resistivity recorded for undoped and Al-doped ZnO film was 2.1 × 10−2 Ω cm and 5.9 × 10−3 Ω cm, after ultraviolet (UV) irradiation. The reason for the decreased resistivity is thought to be that Al-ion doping and the photocatalytic activity of ZnO contributed to improve the conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Hirao, M. Furuta, T. Hiramatsu, T. Matsuda, C. Li, H. Furuta, H. Hokari, M. Yoshida, H. Ishii, and M. Kakegawa, IEEE Trans. Electron Devices 55, 3136 (2008).

    Article  Google Scholar 

  2. J.S. Hong, S.M. Kim, S.J. Park, H.W. Choi, and K.H. Kim, Mol. Cryst. Liq. Cryst. 520, 19 (2010).

    Article  Google Scholar 

  3. M. Zhang, F. Jin, M. Zheng, J. Liu, Z. Zhao, and X. Duan, RSC Adv. 21, 10462 (2014).

    Article  Google Scholar 

  4. M.C. Jun, S.U. Park, and J.H. Koh, Nanoscale Res. Lett. 7, 639 (2012).

    Article  Google Scholar 

  5. H. Gomez and M.L. De la Olvera, Mater. Sci. Eng. B 134, 20 (2006).

    Article  Google Scholar 

  6. E. Fortunato, L. Raniero, L. Silva, A. Goncalves, A. Pimentel, P. Barquinha, H. Aquas, L. Pereora, G. Goncalves, I. Ferreira, E. Elangovan, and R. Martins, Sol. Energy Mater. Sol. Cells 92, 1605 (2008).

    Article  Google Scholar 

  7. T. Minami, T. Miyata, Y. Ohtani, and Y. Mochizuki, Jpn. J. Appl. Phys. 45, L409 (2006).

    Article  Google Scholar 

  8. L. Znaidi, Mater. Sci. Eng. B 174, 18 (2010).

    Article  Google Scholar 

  9. S. Baruah and J. Dutta, Sci. Tech. Adv. Mater. 10, 013001 (2009).

    Article  Google Scholar 

  10. J.S. Hong, H. Wagata, N. Ohashi, K. Katsumata, K. Okada, and N. Matsushita, J. Electron. Mater. 44, 2657 (2015).

    Article  Google Scholar 

  11. J.S. Hong, T. Watanabe, H. Wagata, K. Katsumata, K. Okada, and N. Matsushita, J. Jpn. Soc. Powder Powder Metall. 61, S324 (2014).

  12. D.R. Sahu, S. Lin, and J. Huang, Appl. Surf. Sci. 252, 7509 (2006).

    Article  Google Scholar 

  13. J.S. Hong, N. Matsushita, and K.H. Kim, Thin Solid Films 531, 238 (2013).

    Article  Google Scholar 

  14. H. Yaghoubi, Self-Cleaning Materials and Surfaces: A Nanotechnology Approach (London: Wiley, 2013).

  15. J.S. Hong, H. Wagata, K. Katsumata, K. Okada, and N. Matsushita, Jpn. J. Appl. Phys. 52, 110108 (2013).

    Article  Google Scholar 

  16. J.H. Lee, J.W. Lee, S.Y. Hwang, S.Y. Kim, H.K. Cho, J.Y. Lee, and J.S. Park, J. Nanosci. Nanotech. 12, 5598 (2012).

  17. M.H. Mamat, M.Z. Sahdan, Z. Khusaimi, A. Zain Ahmed, S. Abdullah, and M. Rusop, Opt. Mater. 32, 696 (2010).

  18. H. Wagata, N. Ohashi, T. Taniguchi, K. Katsumata, K. Okada, and N. Matsushita, Cryst. Growth Des. 10, 4968 (2010).

    Article  Google Scholar 

  19. H. Wagata, N. Ohashi, K. Katsumata, H. Segawa, Y. Wada, H. Yoshikawa, S. Ueda, K. Okada, and N. Matsushita, J. Mater. Chem. 22, 20706 (2012).

    Article  Google Scholar 

  20. H. Pan, J.B. Yi, L. Shen, R.Q. Wu, J.H. Yang, J.Y. Lin, Y.P. Feng, J. Ding, L.H. Van, and J.H. Yin, Phys. Rev. Lett. 99, 127201 (2007).

  21. N. Ohashi, Y.G. Wang, T. Ishigaki, Y. Wada, H. Taguchi, I. Sakaguchi, T. Ohgaki, Y. Adachi, and H. Haneda, J. Cryst. Growth 306, 316 (2007).

    Article  Google Scholar 

  22. C.G. Vande Walle, Phys. Rev. Lett. 85, 1012 (2000).

    Article  Google Scholar 

  23. J. Tauc, Amorphous and Liquid Semiconductors (New York: Plenum, 1974).

    Book  Google Scholar 

  24. E.A. David and N.F. Mott, Philos. Magn. 22, 903 (1970).

    Article  Google Scholar 

  25. E. Burstein, Phys. Rev. 93, 632 (1954).

    Article  Google Scholar 

  26. K.G. Saw, N.M. Aznan, F.K. Yam, S.S. Ng, and S.Y. Pung, PLoS One 10, e0141180 (2015).

    Article  Google Scholar 

  27. G. Tang, H. Liu, and W. Zhang, Adv. Mater. Sci. Eng. 2013, 348601 (2013).

    Google Scholar 

  28. J.J. Beltran, J.A. Barrero, and A. Punnuoose, Phys. Chem. Chem. Phys. 17, 15284 (2015).

    Article  Google Scholar 

  29. R. Wegmuller, F. Tay, C. Zeder, M. Brnic, and R.F. Hurrell, J. Nutr. 144, 132 (2014).

    Article  Google Scholar 

  30. H. Zhou, D. Yi, Z. Yu, L. Xiao, and J. Li, Thin Solid Films 515, 6909 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeongsoo Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Katsumata, Ki. & Matsushita, N. Fabrication of Al-Doped ZnO Film with High Conductivity Induced by Photocatalytic Activity. J. Electron. Mater. 45, 4875–4880 (2016). https://doi.org/10.1007/s11664-016-4751-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4751-7

Keywords

Navigation