Skip to main content
Log in

Enhanced Microwave Absorption Properties of Carbon Black/Silicone Rubber Coating by Frequency-Selective Surface

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A square frequency-selective surface (FSS) design has been employed to improve the microwave absorption properties of carbon black/silicone rubber (CBSR) composite coating. The FSS is placed on the surface of the CBSR coating. The effects of FSS design parameters on the microwave absorption properties of the CBSR coating have been investigated, including the size and period of the FSS design, and the thickness and permittivity of the coating. Simulation results indicate that the absorption peak for the CBSR coating alone is related to its thickness and electromagnetic parameters, while the combination of the CBSR coating with a FSS can exhibit a new absorption peak in the reflection curve; the frequency of the new absorption peak is determined by the resonance of the square FSS design and tightly depends on the size of the squares, with larger squares in the FSS design leading to a lower frequency of the new absorption peak. The enhancement of the absorption performance depends on achievement of a new absorption peak using a suitable␣size and period of the FSS design. In addition, the FSS design has a stable␣frequency response for both transverse electromagnetic (TE) and transverse magnetic (TM) polarizations as the incident angle varies from 0° to 40°. The optimized results indicate that the bandwidth with reflection loss below −5 dB can encompass the whole frequency range from 8 GHz to 18 GHz for thickness of the CBSR coating of only 1.8 mm. The simulation results are confirmed by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.D.L. Chung, Carbon 39, 279 (2001).

    Article  Google Scholar 

  2. G. Mu, N. Chen, X. Pan, H. Shen, and M. Gu, Mater. Lett. 62, 840 (2008).

    Article  Google Scholar 

  3. Y.B. Feng, T. Qiu, C.Y. Shen, and X.Y. Li, IEEE Trans. Magn. 42, 363 (2006).

    Article  Google Scholar 

  4. N. Joseph, S.K. Singh, R.K. Sirugudu, V.R.K. Murthy, S. Ananthakumar, and M.T. Sebastian, Mater. Res. Bull. 48, 1681 (2013).

    Article  Google Scholar 

  5. W.S. Chin and D.G. Lee, Compos. Struct. 77, 457 (2007).

    Article  Google Scholar 

  6. N. Joseph and M.T. Sebastian, Mater. Lett. 90, 64 (2013).

    Article  Google Scholar 

  7. K.Y. Park, S.E. Lee, C.G. Kim, and J.H. Han, Compos. Sci. Technol. 66, 576 (2006).

    Article  Google Scholar 

  8. S. Vinayasree, M.A. Soloman, V. Sunny, P. Mohanan, P. Kurian, P.A. Joy, and M.R. Anantharaman, J. Appl. Phys. 116, 024902 (2014).

    Article  Google Scholar 

  9. N. Joseph, C. Janardhanan, and M.T. Sebastian, Compos. Sci. Technol. 101, 139 (2014).

    Article  Google Scholar 

  10. L. Zhou, S. Cui, Y. Zhai, F. Luo, and Y. Dong, Ceram. Int. 41, 14908 (2015).

    Article  Google Scholar 

  11. Z. Yang, F. Luo, J. Xu, W. Zhou, and D. Zhu, J. Alloy. Compd. 662, 607 (2016).

    Article  Google Scholar 

  12. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).

    Article  Google Scholar 

  13. H. Tao, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt, and W.J. Padilla, Opt. Express 16, 7181 (2008).

    Article  Google Scholar 

  14. H.T. Liu, H.F. Cheng, Z.Y. Chu, and D.Y. Zhang, Mater. Des. 28, 2166 (2007).

    Article  Google Scholar 

  15. D. Wan, S.W. Bie, J. Zhou, H. Xu, Y. Xu, and J. Jiang, Progr. Electromagn. Res. C 56, 93 (2015).

    Article  Google Scholar 

  16. Z. Yang, F. Luo, M. Sun, J. Xu, W. Zhou, Y. Qing, D. Zhu, and Z. Huang, Mater. Lett. 151, 109 (2015).

    Article  Google Scholar 

  17. J.H. Oh, K.S. Oh, C.G. Kim, and C.S. Hong, Compos. Part B 35, 49 (2004).

    Article  Google Scholar 

  18. A.A. Barba, G. Lamberti, M. d’Amore, and D. Acierno, Polym. Bull. 57, 587 (2006).

    Article  Google Scholar 

  19. S. Vinayasree, M.A. Soloman, V. Sunny, P. Mohanan, P. Kurian, and M.R. Anantharaman, Compos. Sci. Technol. 82, 69–75 (2013).

    Article  Google Scholar 

  20. S.K. Kwon, J.M. Ahn, G.H. Kim, C.H. Chun, J.S. Hwang, and J.H. Lee, Polym. Eng. Sci. 42, 2165 (2002).

    Article  Google Scholar 

  21. H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, L. Qiu, and H. Peng, Adv. Mater. 26, 8120 (2014).

    Article  Google Scholar 

  22. F.L. Traversa, M.D. Ventra, and F. Bonani, Phys. Rev. Lett. 110, 170602 (2013).

    Article  Google Scholar 

  23. A. Ohlan, K. Singh, A. Chandra, and S.K. Dhawan, ACS Appl. Mater. Interfaces 2, 927 (2010).

    Article  Google Scholar 

  24. N.F. Colaneri and L.W. Schacklette, IEEE Trans. Instrum. Meas. 41, 291 (1992).

    Article  Google Scholar 

  25. W.H. Choi, J.H. Shin, T.H. Song, J.B. Kim, C.M. Cho, W.J. Lee, and C.G. Kim, IEEE Trans. Electromagn. Compat. 56, 599 (2014).

    Article  Google Scholar 

  26. S.S. Kim, S.B. Jo, K.I. Gueon, K.K. Choi, J.M. Kim, and K.S. Churn, IEEE Trans. Magn. 27, 5462 (1991).

    Article  Google Scholar 

  27. J. Huo, L. Wang, and H. Yu, J. Mater. Sci. 44, 3917 (2009).

    Article  Google Scholar 

  28. V.K. Singh, A. Shukla, M.K. Patra, L. Saini, R.K. Jani, S.R. Vadera, and N. Kumar, Carbon 50, 2202 (2012).

    Article  Google Scholar 

  29. G.L.R. Araujo, A.L.P.S. Campos, and A.D.M. Martins, Progr. Electromagn. Res. Lett. 55, 67 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No.␣51402239), Fundamental Research Funds for the Central Universities (No. 3102014JCY01002), and State Key Laboratory of Solidification Processing (NWPU), China (Grant No. KP201422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoning Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Luo, F., Gao, L. et al. Enhanced Microwave Absorption Properties of Carbon Black/Silicone Rubber Coating by Frequency-Selective Surface. J. Electron. Mater. 45, 5017–5023 (2016). https://doi.org/10.1007/s11664-016-4671-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4671-6

Keywords

Navigation