Skip to main content
Log in

Temperature Dependent Thermal Conductivity and Elastic Properties of a-InGaZnO4 and a-In2Ga2ZnO7 Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Amorphous In-Ga-Zn-O is an important oxide semiconductor in advanced display technologies. Despite its importance, little has been reported on the thermal and elastic properties of this material. Here, the temperature dependence of the thermal conductivity, shear modulus, and internal friction of a-InGaZnO4 and a-In2Ga2ZnO7 films are presented. The thermal conductivity of a-In2Ga2ZnO7, measured from 100 K to room temperature, was found to be larger than that of a-InGaZnO4 over the entire temperature range. At room temperature the thermal conductivities were 1.9 W/m K and 1.4 W/m K for the a-In2Ga2ZnO7 and a-InGaZnO4 films, respectively. The shear modulus and internal friction of these films were measured in the temperature range of 340 mK to 65 K. At 4.2 K the shear modulus of the a-InGaZnO4 and a-In2 Ga2ZnO7 films was 44 GPa and 42 GPa, respectively. The internal friction of thin films at each composition exhibited a temperature dependence and magnitude that is in agreement with that observed in all amorphous solids. As the self-heating effect is of concern in the development of amorphous In-Ga-Zn-O based thin film transistors on low thermal conductivity substrates, a thermal model of such a device utilizing a-In2Ga2ZnO7 or a-InGaZnO4 as the active layer was explored. It was found that the temperature increase of the thin film transistor channel is essentially independent of the thermal conductivity of the active layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kamiya and H. Hosono, NPG Asia Mater. 2, 15 (2010).

    Article  Google Scholar 

  2. T. Kamiya, K. Nomura, and H. Hosono, Sci. Technol. Adv. Mater. 11, 044305 (2010).

    Article  Google Scholar 

  3. K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, Jpn. J. Appl. Phys. 45, 4303 (2006).

    Article  Google Scholar 

  4. D.Y. Cho, J. Song, K.D. Na, C.S. Hwang, J.H. Jeong, J.K. Jeong, and Y.G. Mo, Appl. Phys. Lett. 94, 2009 (2009).

    Article  Google Scholar 

  5. K.-H. Liu, T.-C. Chang, W.-C. Chou, H.-M. Chen, M.-Y. Tsai, M.-S. Wu, Y.-S. Hung, P.-H. Hung, T.-Y. Hsieh, Y.-H. Tai, A.-K. Chu, and B.-L. Yeh, J. Appl. Phys. 116, 154508 (2014).

    Article  Google Scholar 

  6. M. Fujii, H. Yano, T. Hatayama, Y. Uraoka, T. Fuyuki, J.S. Jung, and J.Y. Kwon, Jpn. J. Appl. Phys. 47, 6236 (2008).

    Article  Google Scholar 

  7. J.I. Kim, K.S. Chang, D.U. Kim, I.T. Cho, C.Y. Jeong, D. Lee, H.I. Kwon, S.H. Jin, and J.H. Lee, Appl. Phys. Lett. 105, 043501 (2014).

    Article  Google Scholar 

  8. T.C. Chen, T.C. Chang, T.Y. Hsieh, M.Y. Tsai, Y. Te Chen, Y.C. Chung, H.C. Ting, and C.Y. Chen, Appl. Phys. Lett. 101, 042101 (2012).

    Article  Google Scholar 

  9. M. Mativenga, S. Hong, and J. Jang, Appl. Phys. Lett. 102, 2011 (2013).

    Article  Google Scholar 

  10. T.Y. Hsieh, T.C. Chang, T.C. Chen, M.Y. Tsai, Y. Te Chen, Y.C. Chung, H.C. Ting, and C.Y. Chen, Appl. Phys. Lett. 100, 232101 (2012).

    Article  Google Scholar 

  11. T.-C. Chen, T.-C. Chang, C.-T. Tsai, T.-Y. Hsieh, S.-C. Chen, C.-S. Lin, M.-C. Hung, C.-H. Tu, J.-J. Chang, and P.-L. Chen, Appl. Phys. Lett. 97, 112104 (2010).

    Article  Google Scholar 

  12. M. Miyasaka, H. Hara, N. Karaki, S. Inoue, H. Kawai, and S. Nebashi, Jpn. J. Appl. Phys. 47, 4430 (2008).

    Article  Google Scholar 

  13. K.H. Liu, T.C. Chang, M.S. Wu, Y.S. Hung, P.H. Hung, T.Y. Hsieh, W.C. Chou, A.K. Chu, S.M. Sze, and B.L. Yeh, Appl. Phys. Lett. 104, 133503 (2014).

    Article  Google Scholar 

  14. T. Kamiya, K. Nomura, and H. Hosono, J. Disp. Technol. 5, 273 (2009).

    Article  Google Scholar 

  15. P. Barquinha, L. Pereira, G. Gonçalves, R. Martins, and E. Fortunato, J. Electrochem. Soc. 156, H161 (2009).

    Article  Google Scholar 

  16. L. Wang, T.A. Fjeldly, B. Iniguez, H.C. Slade, and M. Shur, IEEE Trans. Electron Devices 47, 387 (2000).

    Article  Google Scholar 

  17. R.O. Pohl, X. Liu, and E. Thompson, Rev. Mod. Phys. 74, 991 (2002).

    Article  Google Scholar 

  18. U. Pietsch, V. Holý, and T. Baumbach, High-Resolution X-ray Scattering (New York: Springer, 2004), p. 148.

    Book  Google Scholar 

  19. J.H. Jeong, H.W. Yang, J.-S. Park, J.K. Jeong, Y.-G. Mo, H.D. Kim, J. Song, and C.S. Hwang, Electrochem. Solid-State Lett. 11, H157 (2008).

    Article  Google Scholar 

  20. J. Grochowski, Y. Hanyu, K. Abe, J. Kaczmarski, J. Dyczewski, H. Hiramatsu, H. Kumomi, H. Hosono, and T. Kamiya, J. Disp. Technol. 11, 523 (2015).

    Article  Google Scholar 

  21. S. Yasuno, T. Kita, S. Morita, A. Hino, K. Hayashi, and T. Kugimiya, Act. Flatpanel Displays Devices (AM-FPD), 2012 19th Int. Work. 147 (2012)

  22. D.G. Cahill, Rev. Sci. Instrum. 61, 802 (1990).

    Article  Google Scholar 

  23. D.G. Cahill, M. Katiyar, and J.R. Abelson, Phys. Rev. B 50, 6077 (1994).

    Article  Google Scholar 

  24. B.E. White Jr. and R.O. Pohl, MRS Symp. Proc. 356, 567 (1995).

    Article  Google Scholar 

  25. C.L. Spiel, R.O. Pohl, and A.T. Zehnder, Rev. Sci. Instrum. 72, 1482 (2001).

    Article  Google Scholar 

  26. Y.S. Touloukian, P. University, and T. P. R. Center, Thermophysical Properties of Matter—The TPRC Data Series, Vol. 2 (New York: IFI/Plenum, 2003), pp. 183–193.

    Google Scholar 

  27. T. Yoshikawa, T. Yagi, N. Oka, J. Jia, Y. Yamashita, K. Hattori, Y. Seino, N. Taketoshi, T. Baba, and Y. Shigesato, Appl. Phys. Express 6, 021101 (2013).

    Article  Google Scholar 

  28. D.G. Cahill and J. Van Cleve, Rev. Sci. Instrum. 60, 2706 (2009).

    Article  Google Scholar 

  29. M.P. Brassington, W.A. Lambson, A.J. Miller, G.A. Saunders, and Y.K. Yogurtçu, Philos. Mag. Part B 42, 127 (1980).

    Article  Google Scholar 

  30. C.R. Kurkjian and J.T. Krause, J. Am. Ceram. Soc. 49, 134 (1966).

    Article  Google Scholar 

  31. D. Safarik and R. Schwarz, Phys. Rev. B 80, 094109 (2009).

    Article  Google Scholar 

  32. G. Bellessa, Phys. Rev. Lett. 40, 1456 (1978).

    Article  Google Scholar 

  33. K.A. Topp and D.G. Cahill, Zeitschrift Für Phys. B Condens. Matter 101, 235 (1996).

    Article  Google Scholar 

  34. B. White Jr and R. Pohl, Zeitschrift Für Phys. B Condens. Matter 100, 401 (1996).

    Article  Google Scholar 

  35. G.A. Slack, Solid State Phys.: Adv. Res. Appl. 34, 1 (1979).

    Google Scholar 

  36. D.G. Cahill and R.O. Pohl, Solid State Commun. 70, 927 (1989).

    Article  Google Scholar 

  37. S.M. Lee, D.G. Cahill, and T.H. Allen, Phys. Rev. B 52, 253 (1995).

    Article  Google Scholar 

  38. D.G. Cahill, S.K. Watson, and R.O. Pohl, Phys. Rev. B 46, 6131 (1992).

    Article  Google Scholar 

  39. J. Berret and M. Meißner, Zeitschrift Für Phys. B Condens. Matter 70, 65 (1988).

    Article  Google Scholar 

  40. Z. Wang, J.E. Alaniz, W. Jang, J.E. Garay, and C. Dames, Nano Lett. 11, 2206 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. D. Thompson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, W.D., White, B.E. Temperature Dependent Thermal Conductivity and Elastic Properties of a-InGaZnO4 and a-In2Ga2ZnO7 Thin Films. J. Electron. Mater. 45, 4890–4897 (2016). https://doi.org/10.1007/s11664-016-4657-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4657-4

Keywords

Navigation