Skip to main content
Log in

First-Principles Study of Thermodynamical and Elastic Properties of η′-(Cu,Co)6Sn5 Ternary Alloys

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

First-principles calculations were made to investigate the formation energy and elastic properties of η′-Cu6Sn5-based intermetallic compounds (IMCs) with different amounts of Co substitutional atom concentrations. The possible Co substitutional sites in η′-Cu6Sn5 structures are examined. The formation energy of substitutional Co in η′-Cu6Sn5 is reduced with increasing Co concentration. The effect of Co on the elastic modulus and ductility of η′-Cu6Sn5 dramatically increased the elastic properties of Cu-Sn IMCs in the range 0–27.27 at.%. Cu4Co2Sn5 has the highest Young’s modulus, bulk modulus and shear modulus with a maximum Poisson’s ratio of 0.32 with 18.18 at.% Co concentration. Ductility for these compounds is further analyzed by calculating the ratio of B/G and Cauchy’s stress (C 12 − C 44) and the results indicate that η′-Cu6Sn5 with Co substitutions should have a better ductility than the pure η′-Cu6Sn5 structure. The electronic structures of Co-substituted η′-Cu6Sn5 are analyzed and the increasing hybridization between Co-d and Sn-p accounts for the improved phase stability and elastic modulus of η′-Cu6Sn5 with Co addition up to 18.18 at.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.N. Tu, Solder Joint Technology: Materials, Properties, and Reliability, 1st ed. (Los Angeles: Springer, 2007), pp. 1–8.

    Book  Google Scholar 

  2. M. Abtew and G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000).

    Article  Google Scholar 

  3. D. Yu, J. Zhao, and L. Wang, J. Alloys Compd. 376, 170 (2004).

    Article  Google Scholar 

  4. L.C. Tsao, C. Chu, and S. Peng, Microelectron. Eng. 88, 2964 (2011).

    Article  Google Scholar 

  5. N. Mookam and K. Kanlayasiri, J. Alloys Compd. 509, 6276 (2011).

    Article  Google Scholar 

  6. N. Mookam and K. Kanlayasiri, J. Mater. Sci. Technol. 28, 53 (2012).

    Article  Google Scholar 

  7. P. Zimprich, A. Betzwar-Kotas, G. Khatibi, B. Weiss, and H. Ipser, J. Mater. Sci. Mater. Electron. 19, 383 (2008).

    Article  Google Scholar 

  8. C. Shin, Y. Baik, and J. Huh, J. Electron. Mater. 30, 1323 (2001).

    Article  Google Scholar 

  9. Y. Gu, X. Zhao, Y. Li, Y. Liu, Y. Wang, and Z. Li, J. Alloys Compd. 627, 39 (2015).

    Article  Google Scholar 

  10. J. Chen, Y.-S. Lai, and P.-F. Yang, in Microsystems, Packaging, Assembly and Circuits Technology Conference Proceedings, (2007), pp. 193–196.

  11. N. Lee, V. Tan, and K. Lim, Appl. Phys. Lett. 88, 031913 (2006).

    Article  Google Scholar 

  12. F. Gao and J. Qu, J. Electron. Mater. 39, 2429 (2010).

    Article  Google Scholar 

  13. G. Ghosh, J. Mater. Res. 19, 1439 (2004).

    Article  Google Scholar 

  14. B.I. Noh, J.H. Choi, J.W. Yoon, and S.B. Jung, J. Alloys Compd. 499, 154 (2010).

    Article  Google Scholar 

  15. K. Kanlayasiri, M. Mongkolwongrojn, and T. Ariga, J. Alloys Compd. 485, 225 (2009).

    Article  Google Scholar 

  16. R.M. Shalaby, J. Alloys Compd. 480, 334 (2009).

    Article  Google Scholar 

  17. T.Y. Kang, Y.Y. Xiu, L. Hui, J.J. Wang, W.P. Tong, and C.Z. Liu, J. Mater. Sci. Technol. 27, 741 (2011).

    Article  Google Scholar 

  18. D.A.-A. Shnawah, S.B.M. Said, M.F.M. Sabri, I.A. Badruddin, and F.X. Che, Microelectron. Reliab. 52, 2701 (2012).

    Article  Google Scholar 

  19. A.S.M.A. Haseeb and T.S. Leng, Intermetallics 19, 707 (2011).

    Article  Google Scholar 

  20. F. Gao, J. Qu, and T. Takemoto, in Electronic Components and Technology Conference Proceedings, (2009), pp. 1014–1020.

  21. H.Y. Song, Q.S. Zhu, Z.G. Wang, J.K. Shang, and M. Lu, Mater. Sci. Eng. B 527, 1343 (2010).

    Article  Google Scholar 

  22. K. Nogita, Intermetallics 18, 145 (2010).

    Article  Google Scholar 

  23. Y.W. Wang, Y.W. Lin, C.T. Tu, and C.R. Kao, J. Alloys Compd. 478, 121 (2009).

    Article  Google Scholar 

  24. H.J. Lin and T.H. Chuang, J. Alloys Compd. 500, 167 (2010).

    Article  Google Scholar 

  25. H.T. Lee, M.H. Chen, H.M. Jao, and T.L. Liao, Mater. Sci. Eng. A 358, 134 (2003).

    Article  Google Scholar 

  26. W.Q. Shao, C.Y. Yu, W.C. Lu, J.G. Duh, and S.O. Chen, Mater. Lett. 93, 300 (2013).

    Article  Google Scholar 

  27. C.Y. Yu and J.G. Duh, Scripta Mater. 65, 783 (2011).

    Article  Google Scholar 

  28. A.A. El-Daly, A.M. El-Taher, and T.R. Dalloul, J. Alloys Compd. 587, 32 (2014).

    Article  Google Scholar 

  29. L. Xu and J.H.L. Pang, Thin Solid Films 504, 362 (2006).

    Article  Google Scholar 

  30. G. Ghosh, S. Delsante, G. Borzone, M. Asta, and R. Ferro, Acta Mater. 54, 4977 (2006).

    Article  Google Scholar 

  31. F. Gao, J. Qu, and T. Takemoto, J. Electron. Mater. 39, 426 (2010).

    Article  Google Scholar 

  32. I. Anderson, B. Cook, J. Harringa, and R. Terpstra, JOM 54, 26 (2002).

    Article  Google Scholar 

  33. M.Y. Li, Z.H. Zhang, and J.M. Kim, Appl. Phys. Lett. 98, 201901 (2011).

    Article  Google Scholar 

  34. F. Gao and T. Takemoto, in Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems Conference Proceedings, vol. 1, (2006), pp. 10–21.

  35. C.Y. Yu, W.Y. Chen, and J.G. Duh, J. Alloys Compd. 586, 633 (2014).

    Article  Google Scholar 

  36. F. Gao and J. Qu, in ASME 2009 International Mechanical Engineering Congress and Exposition Conference Proceedings, (2009), pp. 159–163.

  37. L. Ma, G. Xu, J. Sun, F. Guo, and X. Wang, J. Mater. Sci. 46, 4896 (2011).

    Article  Google Scholar 

  38. I. Anderson, J. Foley, B. Cook, J. Harringa, R. Terpstra, and O. Unal, J. Electron. Mater. 30, 1050 (2001).

    Article  Google Scholar 

  39. F. Gao, T. Takemoto, and H. Nishikawa, Mater. Sci. Eng. B 420, 39 (2006).

    Article  Google Scholar 

  40. H. Nishikawa, A. Komatsu, and T. Takemoto, J. Electron. Mater. 36, 1137 (2007).

    Article  Google Scholar 

  41. F. Gao, J. Qu, and T. Takemoto, J. Electron. Mater. 39, 426 (2010).

    Article  Google Scholar 

  42. M. Segall, P.J. Lindan, M.A. Probert, C. Pickard, P. Hasnip, S. Clark, and M. Payne, J. Phys. Condens. Matter. 14, 2717 (2002).

    Article  Google Scholar 

  43. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  44. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Article  Google Scholar 

  45. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  46. C. Yu, J. Chen, J. Xu, J. Chen, and H. Lu, Mater. Res. Express. 1, 025702 (2014).

    Article  Google Scholar 

  47. S. Chen, W. Zhou, and P. Wu, Intermetallics 54, 187 (2014).

    Article  Google Scholar 

  48. J. Chen, Y.-S. Lai, C.-Y. Ren, and D.-J. Huang, Appl. Phys. Lett. 92, 081901 (2008).

    Article  Google Scholar 

  49. J.F. Nye, Physical Properties of Crystals (Oxford: Clarendon Press, 1985).

    Google Scholar 

  50. J. Chen, Y.-S. Lai, P.-F. Yang, C.-Y. Ren, and D.-J. Huang, J. Mater. Res. 24, 2361 (2009).

    Article  Google Scholar 

  51. Z. Reuss, Z. Angew. Math. Phys. 9, 49 (1929).

    Article  Google Scholar 

  52. W. Voigt, Lehrbuch der kristallphysik:mit ausschluss der kristalloptik (Eulenburg: Teubner, 1910).

    Google Scholar 

  53. R. Hill, Proc. Phys. Soc. A 65, 349 (1952).

    Article  Google Scholar 

  54. A.K. Larsson, L. Stenberg, and S. Lidin, Acta Crystallogr. Sect. B 50, 636 (1994).

    Article  Google Scholar 

  55. G. Ghosh and M. Asta, J. Mater. Res. 20, 3102 (2005).

    Article  Google Scholar 

  56. F. Gao, T. Takemoto, and H. Nishikawa, Mater. Sci. Eng. A 420, 39 (2006).

    Article  Google Scholar 

  57. D. Pettifor, Mater. Sci. Technol. 8, 345 (1992).

    Article  Google Scholar 

  58. A. Syed, T.S. Kim, Y.M. Cho, W.K. Chang, and Y. Min, in Electronics Packaging Technology Conference Proceedings, (2007), pp. 404–411.

  59. X. Deng, N. Chawla, K. Chawla, and M. Koopman, Acta Mater. 52, 4291 (2004).

    Article  Google Scholar 

  60. X. Deng, M. Koopman, N. Chawla, and K. Chawla, Mater. Sci. Eng. B 364, 240 (2004).

    Article  Google Scholar 

  61. G. Lu and L. Zhang, Sci. China Phys. Mech. Astron. 55, 2305 (2012).

    Article  Google Scholar 

  62. S. Pugh, Lond. Edinb. Dublin Philos. Mag. J. Sci. 45, 823 (1954).

    Article  Google Scholar 

  63. X.-L. Hu, Y. Zhang, G.-H. Lu, T. Wang, P.-H. Xiao, P.-G. Yin, and H. Xu, Intermetallics 17, 358 (2009).

    Article  Google Scholar 

  64. C. Yu, J. Liu, H. Lu, and P. Li, J. Chen. Intermetallics. 15, 1471 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Research Foundation of Beijing Institute of Technology (Grant No. 20130942009) and the National Science and Technology Major Project (2011ZX02607).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhao, X., Zheng, B. et al. First-Principles Study of Thermodynamical and Elastic Properties of η′-(Cu,Co)6Sn5 Ternary Alloys. J. Electron. Mater. 45, 4919–4927 (2016). https://doi.org/10.1007/s11664-016-4654-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4654-7

Keywords

Navigation